205 research outputs found

    Performance of a Qualitative Point-of-Care Strip Test to Detect DOAC Exposure at the Emergency Department:A Cohort-Type Cross-Sectional Diagnostic Accuracy Study

    Get PDF
    An accurate point-of-care test for detecting effective anticoagulation by direct oral anticoagulants (DOACs) in emergencies is an unmet need. We investigated the accuracy of a urinary qualitative strip test (DOAC Dipstick) to detect relevant DOAC exposure in patients who presented to an emergency department. In this prospective single-center cohort-type cross-sectional study, adults on DOAC treatment were enrolled. We assessed clinical sensitivity and specificity of DOAC Dipstick factor Xa and thrombin inhibitor pads to detect DOAC plasma levels ≥30 ng/mL using urine samples as the testing matrix. Liquid chromatography coupled with tandem-mass spectrometry was used as the reference standard method for plasma and urine measurement of DOAC concentrations. Of 293 patients enrolled, 265 patients were included in the analysis, of whom 92 were treated with rivaroxaban, 65 with apixaban, 77 with edoxaban, and 31 with dabigatran. The clinical sensitivity and specificity of the dipstick on urine samples to detect ≥30 ng/mL dabigatran plasma levels were 100% (95% confidence interval [CI]: 87–100%) and 98% (95% CI: 95–99%), respectively. The sensitivity and specificity of the dipstick to detect ≥30 ng/mL factor Xa inhibitor plasma levels were 97% (95% CI: 94–99%) and 69% (95% CI: 56–79%), respectively. The DOAC Dipstick sensitively identified effective thrombin and factor Xa inhibition in a real-world cohort of patients presenting at an emergency department. Therefore, the dipstick might provide a valuable test to detect relevant DOAC exposure in emergencies, although further studies will be needed to confirm these findings

    Multi-phasic life-threatening anaphylaxis refractory to epinephrine managed by extracorporeal membrane oxygenation (ECMO): A case report

    Get PDF
    We present a case of a 52-year-old patient suffering from multi-phasic life-threatening anaphylaxis refractory to epinephrine treatment. Extracorporeal membrane oxygenation (ECMO) therapy was initiated as the ultima ratio to stabilize the patient hemodynamically during episodic severe bronchospasm. ECMO treatment was successfully weaned after 4 days. Mastocytosis was diagnosed as the underlying condition. Although epinephrine is recommended as a first-line treatment for anaphylaxis, this impressive case provides clear evidence of its limited therapeutic success and emphasizes the need for causal therapies

    Adverse events in people taking macrolide antibiotics versus placebo for any indication

    Get PDF
    BACKGROUND: Macrolide antibiotics (macrolides) are among the most commonly prescribed antibiotics worldwide and are used for a wide range of infections. However, macrolides also expose people to the risk of adverse events. The current understanding of adverse events is mostly derived from observational studies, which are subject to bias because it is hard to distinguish events caused by antibiotics from events caused by the diseases being treated. Because adverse events are treatment-specific, rather than disease-specific, it is possible to increase the number of adverse events available for analysis by combining randomised controlled trials (RCTs) of the same treatment across different diseases. OBJECTIVES:To quantify the incidences of reported adverse events in people taking macrolide antibiotics compared to placebo for any indication. SEARCH METHODS: We searched the Cochrane Central Register of Controlled Trials (CENTRAL), which includes the Cochrane Acute Respiratory Infections Group Specialised Register (2018, Issue 4); MEDLINE (Ovid, from 1946 to 8 May 2018); Embase (from 2010 to 8 May 2018); CINAHL (from 1981 to 8 May 2018); LILACS (from 1982 to 8 May 2018); and Web of Science (from 1955 to 8 May 2018). We searched clinical trial registries for current and completed trials (9 May 2018) and checked the reference lists of included studies and of previous Cochrane Reviews on macrolides. SELECTION CRITERIA: We included RCTs that compared a macrolide antibiotic to placebo for any indication. We included trials using any of the four most commonly used macrolide antibiotics: azithromycin, clarithromycin, erythromycin, or roxithromycin. Macrolides could be administered by any route. Concomitant medications were permitted provided they were equally available to both treatment and comparison groups. DATA COLLECTION AND ANALYSIS: Two review authors independently extracted and collected data. We assessed the risk of bias of all included studies and the quality of evidence for each outcome of interest. We analysed specific adverse events, deaths, and subsequent carriage of macrolide-resistant bacteria separately. The study participant was the unit of analysis for each adverse event. Any specific adverse events that occurred in 5% or more of any group were reported. We undertook a meta-analysis when three or more included studies reported a specific adverse event. MAIN RESULTS: We included 183 studies with a total of 252,886 participants (range 40 to 190,238). The indications for macrolide antibiotics varied greatly, with most studies using macrolides for the treatment or prevention of either acute respiratory tract infections, cardiovascular diseases, chronic respiratory diseases, gastrointestinal conditions, or urogynaecological problems. Most trials were conducted in secondary care settings. Azithromycin and erythromycin were more commonly studied than clarithromycin and roxithromycin.Most studies (89%) reported some adverse events or at least stated that no adverse events were observed.Gastrointestinal adverse events were the most commonly reported type of adverse event. Compared to placebo, macrolides caused more diarrhoea (odds ratio (OR) 1.70, 95% confidence interval (CI) 1.34 to 2.16; low-quality evidence); more abdominal pain (OR 1.66, 95% CI 1.22 to 2.26; low-quality evidence); and more nausea (OR 1.61, 95% CI 1.37 to 1.90; moderate-quality evidence). Vomiting (OR 1.27, 95% CI 1.04 to 1.56; moderate-quality evidence) and gastrointestinal disorders not otherwise specified (NOS) (OR 2.16, 95% CI 1.56 to 3.00; moderate-quality evidence) were also reported more often in participants taking macrolides compared to placebo.The number of additional people (absolute difference in risk) who experienced adverse events from macrolides was: gastrointestinal disorders NOS 85/1000; diarrhoea 72/1000; abdominal pain 62/1000; nausea 47/1000; and vomiting 23/1000.The number needed to treat for an additional harmful outcome (NNTH) ranged from 12 (95% CI 8 to 23) for gastrointestinal disorders NOS to 17 (9 to 47) for abdominal pain; 19 (12 to 33) for diarrhoea; 19 (13 to 30) for nausea; and 45 (22 to 295) for vomiting.There was no clear consistent difference in gastrointestinal adverse events between different types of macrolides or route of administration.Taste disturbances were reported more often by participants taking macrolide antibiotics, although there were wide confidence intervals and moderate heterogeneity (OR 4.95, 95% CI 1.64 to 14.93; Iand#178; = 46%; low-quality evidence).Compared with participants taking placebo, those taking macrolides experienced hearing loss more often, however only four studies reported this outcome (OR 1.30, 95% CI 1.00 to 1.70; Iand#178; = 0%; low-quality evidence).We did not find any evidence that macrolides caused more cardiac disorders (OR 0.87, 95% CI 0.54 to 1.40; very low-quality evidence); hepatobiliary disorders (OR 1.04, 95% CI 0.27 to 4.09; very low-quality evidence); or changes in liver enzymes (OR 1.56, 95% CI 0.73 to 3.37; very low-quality evidence) compared to placebo.We did not find any evidence that appetite loss, dizziness, headache, respiratory symptoms, blood infections, skin and soft tissue infections, itching, or rashes were reported more often by participants treated with macrolides compared to placebo.Macrolides caused less cough (OR 0.57, 95% CI 0.40 to 0.80; moderate-quality evidence) and fewer respiratory tract infections (OR 0.70, 95% CI 0.62 to 0.80; moderate-quality evidence) compared to placebo, probably because these are not adverse events, but rather characteristics of the indications for the antibiotics. Less fever (OR 0.73, 95% 0.54 to 1.00; moderate-quality evidence) was also reported by participants taking macrolides compared to placebo, although these findings were non-significant.There was no increase in mortality in participants taking macrolides compared with placebo (OR 0.96, 95% 0.87 to 1.06; Iand#178; = 11%; low-quality evidence).Only 24 studies (13%) provided useful data on macrolide-resistant bacteria. Macrolide-resistant bacteria were more commonly identified among participants immediately after exposure to the antibiotic. However, differences in resistance thereafter were inconsistent.Pharmaceutical companies supplied the trial medication or funding, or both, for 91 trials. AUTHORS' CONCLUSIONS: The macrolides as a group clearly increased rates of gastrointestinal adverse events. Most trials made at least some statement about adverse events, such as "none were observed". However, few trials clearly listed adverse events as outcomes, reported on the methods used for eliciting adverse events, or even detailed the numbers of people who experienced adverse events in both the intervention and placebo group. This was especially true for the adverse event of bacterial resistance.</p

    Change of Hemoglobin Levels in the Early Post-cardiac Arrest Phase Is Associated With Outcome

    Get PDF
    Background: The post-cardiac arrest (CA) phase is characterized by high fluid requirements, endothelial activation and increased vascular permeability. Erythrocytes are large cells and may not leave circulation despite massive capillary leak. We hypothesized that dynamic changes in hemoglobin concentrations may reflect the degree of vascular permeability and may be associated with neurologic function after CA.Methods: We included patients ≥18 years, who suffered a non-traumatic CA between 2013 and 2018 from the prospective Vienna Clinical Cardiac Arrest Registry. Patients without return of spontaneous circulation (ROSC), with extracorporeal life support, with any form of bleeding, undergoing surgery, receiving transfusions, without targeted temperature management or with incomplete datasets for multivariable analysis were excluded. The primary outcome was neurologic function at day 30 assessed by the Cerebral Performance Category scale. Differences of hemoglobin concentrations at admission and 12 h after ROSC were calculated and associations with neurologic function were investigated by uni- and multivariable logistic regression.Results: Two hundred and seventy-five patients were eligible for analysis of which 143 (52%) had poor neurologic function. For every g/dl increase in hemoglobin from admission to 12 h the odds of poor neurologic function increased by 26% (crude OR 1.26, 1.07–1.49, p = 0.006). The effect remained unchanged after adjustment for fluid balance and traditional prognostication markers (adjusted OR 1.27, 1.05–1.54, p = 0.014).Conclusion: Increasing hemoglobin levels in spite of a positive fluid balance may serve as a surrogate parameter of vascular permeability and are associated with poor neurologic function in the early post-cardiac arrest period

    Changes in hemostasis parameters in nonfatal methicillin-sensitive Staphylococcus aureus bacteremia complicated by endocarditis or thromboembolic events : a prospective gender-age adjusted cohort study

    Get PDF
    The aim of this study was to examine the changes in hemostasis parameters in endocarditis and thromboembolic events in nonfatal methicillin-sensitive Staphylococcus aureus bacteremia (MS-SAB) - a topic not evaluated previously. In total, 155 patients were recruited and were categorized according to the presence of endocarditis or thromboembolic events with gender-age adjusted controls. Patients who deceased within 90 days or patients not chosen as controls were excluded. SAB management was supervised by an infectious disease specialist. Patients with endocarditis (N = 21), compared to controls (N = 21), presented lower antithrombin III at day 4 (p <0.05), elevated antithrombin III at day 90 (p <0.01), prolonged activated partial thromboplastin time at days 4 and 10 (p <0.05), and enhanced thrombin-antithrombin complex at day 4 (p <0.01). Thromboembolic events (N = 8), compared to controls (N = 34), significantly increased thrombin-antithrombin complex at day 4 (p <0.05). In receiver operating characteristic analysis, the changes in these hemostasis parameters at day 4 predicted endocarditis and thromboembolic events (p <0.05). No differences in hemoglobin, thrombocyte, prothrombin fragment, thrombin time, factor VIII, D-dimer or fibrinogen levels were observed between cases and controls. The results suggest that nonfatal MS-SAB patients present marginal hemostasis parameter changes that, however, may have predictability for endocarditis or thromboembolic events. Larger studies are needed to further assess the connection of hemostasis to complications in SAB.Peer reviewe

    Targeted temperature management after cardiac arrest is associated with reduced metabolism of pantoprazole - a probe drug of CYP2C19 metabolism

    Get PDF
    OBJECTIVE\nMETHODS\nRESULTS\nCONCLUSION\nTargeted temperature management (TTM) is part of standard post-resuscitation care. TTM may downregulate cytochrome enzyme activity and thus impact drug metabolism. This study compared the pharmacokinetics (PK) of pantoprazole, a probe drug of CYP2C19-dependent metabolism, at different stages of TTM following cardiac arrest.\nThis prospective controlled study was performed at the Medical University of Vienna and enrolled 16 patients following cardiac arrest. The patients completed up to three study periods (each lasting 24 h) in which plasma concentrations of pantoprazole were quantified: (P1) hypothermia (33 °C) after admission, (P2) normothermia after rewarming (36 °C, intensive care), and (P3) normothermia during recovery (normal ward, control group). PK was analysed using non-compartmental analysis and nonlinear mixed-effects modelling.\n16 patients completed periods P1 and P2; ten completed P3. The median half-life of pantoprazole was 2.4 h (quartiles: 1.8-4.8 h) in P1, 2.8 h (2.1-6.8 h, p = 0.046 vs. P1, p = 0.005 vs. P3) in P2 and 1.2 h (0.9 - 2.3 h, p = 0.007 vs. P1) in P3. A two-compartment model described the PK data best. Typical values for clearance were estimated separately for each study period, indicating 40% and 29% reductions during P1 and P2, respectively, compared to P3. The central volume of distribution was estimated separately for P2, indicating a 64% increase compared to P1 and P3.\nCYP2C19-dependent drug metabolism is downregulated during TTM following cardiac arrest. These results may influence drug choice and dosing of similarly metabolized drugs and may be helpful for designing studies in similar clinical situations.Pharmacolog
    corecore