14 research outputs found

    The forward physics facility at the high-luminosity LHC

    Get PDF
    High energy collisions at the High-Luminosity Large Hadron Collider (LHC) produce a large number of particles along the beam collision axis, outside of the acceptance of existing LHC experiments. The proposed Forward Physics Facility (FPF), to be located several hundred meters from the ATLAS interaction point and shielded by concrete and rock, will host a suite of experiments to probe standard model (SM) processes and search for physics beyond the standard model (BSM). In this report, we review the status of the civil engineering plans and the experiments to explore the diverse physics signals that can be uniquely probed in the forward region. FPF experiments will be sensitive to a broad range of BSM physics through searches for new particle scattering or decay signatures and deviations from SM expectations in high statistics analyses with TeV neutrinos in this low-background environment. High statistics neutrino detection will also provide valuable data for fundamental topics in perturbative and non-perturbative QCD and in weak interactions. Experiments at the FPF will enable synergies between forward particle production at the LHC and astroparticle physics to be exploited. We report here on these physics topics, on infrastructure, detector, and simulation studies, and on future directions to realize the FPF's physics potential

    Tenascin-R associates extracellularly with parvalbumin immunoreactive neurones but is synthesised by another neuronal population in the adult rat cerebral cortex

    No full text
    The molecular components surrounding a neurone serve as recognition cues for the nerve terminals and glial processes that contact them and the constellations formed by these inputs will therefore be determined by the blend of adhesive and repulsive components therein. Using immunohistochemical methods; we observed that the large extracellular matrix-protein, tenascin-R (Restrictin, J1-160-180, Janusin), associates preferentially with the parvalbumin-positive subpopulation of interneurones within the cerebral cortex. In situ-hybridization indicated that-tenascin-R-mRNA was expressed in a subpopulation of nerve cells distinct from that containing parvalbumin, suggesting that this protein's association with the latter is receptor mediated. These nerve cells thus modulate at a distance the composition of the extracellular matrix around parvalbumin-neurons

    Parvalbumin-deficiency affects network properties resulting in increased susceptibility to epileptic seizure

    No full text
    Networks of GABAergic interneurons are of utmost importance in generating and promoting synchronous activity and are involved in producing coherent oscillations. These neurons are characterized by their fast-spiking rate and by the expression of the Ca2+-binding protein parvalbumin (PV). Alteration of their inhibitory activity has been proposed as a major mechanism leading to epileptic seizures and thus the role of PV in maintaining the stability of neuronal networks was assessed in knockout (PV-/-) mice. Pentylenetetrazole induced generalized tonic-clonic seizures in all genotypes, but the severity of seizures was significantly greater in PV-/- than in PV+/+ animals. Extracellular single-unit activity recorded from over 1000 neurons in vivo in the temporal cortex revealed an increase of units firing regularly and a decrease of cells firing in bursts. In the hippocampus, PV deficiency facilitated the GABA(A)ergic current reversal induced by high-frequency stimulation, a mechanism implied in the generation of epileptic activity. We postulate that PV plays a key role in the regulation of local inhibitory effects exerted by GABAergic interneurons on pyramidal neurons. Through an increase in inhibition, the absence of PV facilitates synchronous activity in the cortex and facilitates hypersynchrony through the depolarizing action of GABA in the hippocampus
    corecore