30 research outputs found

    Wechselwirkungen zwischen Systemvariablen und Produktionskrankheiten auf ökologischen Milchviehbetrieben

    Get PDF
    Production diseases (PDs) emerge from complex interactions between a multitude of variables. In order to prevent and control PDs, measures need to be taken that are likely to be effective in the farm context. In this study, an impact analysis was performed on 60 organic dairy farms in Germany to assess the relationships between 13 system variables and to determine factors with a large impact on PDs. Direct impacts were estimated during a round-table discussion between farmer, veterinarian and advisor using an impact matrix. Indirect impacts were computed and evaluated by graph analysis. Across farms, feeding, hygiene, and treatment had the highest direct impact on PDs, whereas knowledge and skills, herd health monitoring, and dry cow management were most influential considering indirect impacts. Despite these general tendencies, there was great variation between farms regarding their most influential variables. By enabling system understanding and identifying farm areas where improvement measures are most likely to have an effect, the presented approach is expected to considerably support decision-making with respect to animal health management

    Multilocus Sequence Typing Reveals Extensive Genetic Diversity of the Emerging Fungal Pathogen Scedosporium aurantiacum

    Get PDF
    Scedosporium spp. are the second most prevalent filamentous fungi after Aspergillus spp. recovered from cystic fibrosis (CF) patients in various regions of the world. Although invasive infection is uncommon prior to lung transplantation, fungal colonization may be a risk factor for invasive disease with attendant high mortality post-transplantation. Abundant in the environment, Scedosporium aurantiacum has emerged as an important fungal pathogen in a range of clinical settings. To investigate the population genetic structure of S. aurantiacum, a MultiLocus Sequence Typing (MLST) scheme was developed, screening 24 genetic loci for polymorphisms on a tester strain set. The six most polymorphic loci were selected to form the S. aurantiacum MLST scheme: actin (ACT), calmodulin (CAL), elongation factor-1α (EF1α), RNA polymerase subunit II (RPB2), manganese superoxide dismutase (SOD2), and β-tubulin (TUB). Among 188 global clinical, veterinary, and environmental strains, 5 to 18 variable sites per locus were revealed, resulting in 8 to 23 alleles per locus. MLST analysis observed a markedly high genetic diversity, reflected by 159 unique sequence types. Network analysis revealed a separation between Australian and non-Australian strains. Phylogenetic analysis showed two major clusters, indicating correlation with geographic origin. Linkage disequilibrium analysis revealed evidence of recombination. There was no clustering according to the source of the strains: clinical, veterinary, or environmental. The high diversity, especially amongst the Australian strains, suggests that S. aurantiacum may have originated within the Australian continent and was subsequently dispersed to other regions, as shown by the close phylogenetic relationships between some of the Australian sequence types and those found in other parts of the world. The MLST data are accessible at http://mlst.mycologylab.org. This is a joined publication of the ISHAM/ECMM working groups on “Scedosporium/Pseudallescheria Infections” and “Fungal Respiratory Infections in Cystic Fibrosis”.Peer Reviewe

    Proposed nomenclature for Pseudallescheria, Scedosporium and related genera

    Get PDF
    As a result of fundamental changes in the International Code of Nomenclature on the use of separate names for sexual and asexual stages of fungi, generic names of many groups should be reconsidered. Members of the ECMM/ISHAM working group on Pseudallescheria/Scedosporium infections herein advocate a novel nomenclature for genera and species in Pseudallescheria, Scedosporium and allied taxa. The generic names Parascedosporium, Lomentospora, Petriella, Petriellopsis, and Scedosporium are proposed for a lineage within Microascaceae with mostly Scedosporium anamorphs producing slimy, annellidic conidia. Considering that Scedosporium has priority over Pseudallescheria and that Scedosporium prolificans is phylogenetically distinct from the other Scedosporium species, some name changes are proposed. Pseudallescheria minutispora and Petriellidium desertorum are renamed as Scedosporium minutisporum and S. desertorum, respectively. Scedosporium prolificans is renamed as Lomentospora prolificans

    Eine folgenreiche Schwangerschaft

    No full text

    Studie zur Evaluierung der BMFT-Foederung von Forschungsprojekten zur Entwicklung von Ersatzmethoden zu Tierversuchen Abschlussbericht

    No full text
    Available from TIB Hannover: F95B2134+a / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekSIGLEBundesministerium fuer Forschung und Technologie (BMFT), Bonn (Germany)DEGerman
    corecore