121 research outputs found

    An engineered IN-1 Fab fragment with improved affinity for the Nogo-A axonal growth inhibitor permits immunochemical detection and shows enhanced neutralizing activity

    Get PDF
    The myelin axonal growth inhibitor NI-220/250 (Nogo-A) has attracted considerable attention in elucidating the mechanisms that account for the lack of plasticity in the adult central nervous system. The cognate monoclonal antibody IN-1, which was obtained prior to the molecular characterization of its Nogo-A antigen, has played a crucial role in this respect. However, this murine IgM/Îș antibody does not only provide an inappropriate format for in vivo studies, its low antigen affinity has also hampered the thorough structure-function analysis of its neutralizing effect toward the Nogo-A inhibitor on a molecular basis. We describe here the affinity maturation of a bacterially produced functional IN-1 Fab fragment via protein engineering. A soluble fragment of Nogo-A derived from the central exon 3 of its gene, which was prepared by secretion into the periplasm of Escherichia coli, served as a target in these experiments. After repeated cycles of site-directed random mutagenesis and screening, the mutant II.1.8 of the IN-1 Fab fragment was obtained, carrying five side chain substitutions within CDR-L3. Its dissociation constant for the complex with the recombinant Nogo-A fragment was determined in surface plasmon resonance measurements as approximately 1 ÎŒM. The affinity of the unmutated IN-1 Fab fragment was 8-fold lower. The engineered Fab fragment appeared to be well suited for the specific detection of Nogo-A in immunochemical assays and for the histochemical staining of myelin-rich tissue sections. Most importantly, its concentration-dependent neutralizing effect on the Nogo-A inhibitory activity was significantly enhanced in cell culture. This study confirms Nogo-A to be the antigen of the IN-1 antibody and it demonstrates increased potential of the engineered Fab fragment as a reagent for promoting axonal regeneration in viv

    Role of Fragment Higher Static Deformations in the Cold Binary Fission of 252^{252}Cf

    Get PDF
    We study the binary cold fission of 252^{252}Cf in the frame of a cluster model where the fragments are born to their respective ground states and interact via a double-folded potential with deformation effects taken into account up to multipolarity λ=4\lambda=4. The preformation factors were neglected. In the case when the fragments are assumed to be spherical or with ground state quadrupole deformation, the QQ-value principle dictates the occurence of a narrow region around the double magic 132^{132}Sn, like in the case of cluster radioactivity. When the hexadecupole deformation is turned on, an entire mass-region of cold fission in the range 138 - 156 for the heavy fragment arise, in agreement with the experimental observations. This fact suggests that in the above mentioned mass-region, contrary to the usual cluster radioactivity where the daughter nucleus is always a neutron/proton (or both) closed shell or nearly closed shell spherical nucleus, the clusterization mechanism seems to be strongly influenced by the hexadecupole deformations rather than the QQ-value.Comment: 10 pages, 12 figure

    Introduction: Ambidextrous open innovation in the 4th Industrial Revolution

    Get PDF
    With the popularity of artificial intelligence, big data and Internet of Things, business nowadays is featured with technology advancement, open innovation and collaboration. This happens particularly in the manufacturing sectors, known as the Industrial 4.0 or the 4th Industrial Revolution. Alongside this trend, there is also a movement towards servitisation and service innovation. In the financial service sector, FinTech firms, traditional large firms, intermediaries, users and regulators are actively engaged together to develop a smart system of banking, investing and insurance service. Nevertheless, the sector is facing challenges in relation to security, trust and external disruptions. To solve this, first, this article builds an ambidextrous open innovation model with multi-dimensions, which are motivated by the arriving of the 4th Industrial Revolution. Second, this article applies the ambidextrous open innovation model with multi-dimensions to the financial sectors to validate the model basically. Third, this model is applied to several research studies to obtain additional validation of it

    Changes of motor corticobulbar projections following different lesion types affecting the central nervous system in adult macaque monkeys.

    Get PDF
    Functional recovery from central nervous system injury is likely to be partly due to a rearrangement of neural circuits. In this context, the corticobulbar (corticoreticular) motor projections onto different nuclei of the ponto-medullary reticular formation (PMRF) were investigated in 13 adult macaque monkeys after either, primary motor cortex injury (MCI) in the hand area, or spinal cord injury (SCI) or Parkinson's disease-like lesions of the nigro-striatal dopaminergic system (PD). A subgroup of animals in both MCI and SCI groups was treated with neurite growth promoting anti-Nogo-A antibodies, whereas all PD animals were treated with autologous neural cell ecosystems (ANCE). The anterograde tracer BDA was injected either in the premotor cortex (PM) or in the primary motor cortex (M1) to label and quantify corticobulbar axonal boutons terminaux and en passant in PMRF. As compared to intact animals, after MCI the density of corticobulbar projections from PM was strongly reduced but maintained their laterality dominance (ipsilateral), both in the presence or absence of anti-Nogo-A antibody treatment. In contrast, the density of corticobulbar projections from M1 was increased following opposite hemi-section of the cervical cord (at C7 level) and anti-Nogo-A antibody treatment, with maintenance of contralateral laterality bias. In PD monkeys, the density of corticobulbar projections from PM was strongly reduced, as well as that from M1, but to a lesser extent. In conclusion, the densities of corticobulbar projections from PM or M1 were affected in a variable manner, depending on the type of lesion/pathology and the treatment aimed to enhance functional recovery

    Mobilise-D insights to estimate real-world walking speed in multiple conditions with a wearable device

    Get PDF
    This study aimed to validate a wearable device’s walking speed estimation pipeline, considering complexity, speed, and walking bout duration. The goal was to provide recommendations on the use of wearable devices for real-world mobility analysis. Participants with Parkinson’s Disease, Multiple Sclerosis, Proximal Femoral Fracture, Chronic Obstructive Pulmonary Disease, Congestive Heart Failure, and healthy older adults (n = 97) were monitored in the laboratory and the real-world (2.5 h), using a lower back wearable device. Two walking speed estimation pipelines were validated across 4408/1298 (2.5 h/laboratory) detected walking bouts, compared to 4620/1365 bouts detected by a multi-sensor reference system. In the laboratory, the mean absolute error (MAE) and mean relative error (MRE) for walking speed estimation ranged from 0.06 to 0.12 m/s and − 2.1 to 14.4%, with ICCs (Intraclass correlation coefficients) between good (0.79) and excellent (0.91). Real-world MAE ranged from 0.09 to 0.13, MARE from 1.3 to 22.7%, with ICCs indicating moderate (0.57) to good (0.88) agreement. Lower errors were observed for cohorts without major gait impairments, less complex tasks, and longer walking bouts. The analytical pipelines demonstrated moderate to good accuracy in estimating walking speed. Accuracy depended on confounding factors, emphasizing the need for robust technical validation before clinical application. Trial registration: ISRCTN – 12246987

    Cytokine-induced acute inflammation in the brain and spinal cord

    No full text
    Different compartments in the central nervous system mount distinct inflammatory responses. The meninges and choroid plexus respond to pro-inflammatory stimuli in a manner reminiscent of a peripheral inflammatory response, whereas the brain parenchyma is refractory. Trauma-induced lesions in brain and in spinal cord are associated with leukocyte infiltration, blood-brain barrier (BBB) breakdown, and secondary tissue destruction. Unexpectedly, these phenomena are generally more pronounced in the parenchyma of the spinal cord than in the parenchyma of the brain. To investigate whether these differences between brain and spinal cord can be attributed, at least in part, to differing sensitivities to proinflammatory cytokines, we stereotactically injected recombinant rat (rr) TNF[alpha] or rrIL-1[beta] into the striatum or the spinal cord of Wistar rats. In the brain, the injection of rrTNF[alpha] failed to evoke BBB breakdown or leukocyte recruitment, whereas in the spinal cord injection of TNF[alpha] resulted in marked BBB breakdown and leukocyte recruitment. Similarly, the injection of rrIL-1[beta] into the brain parenchyma failed to induce BBB breakdown and gave rise to only minimal neutrophil recruitment, whereas the injection of rrIL-1[beta] into the spinal cord induced significant BBB breakdown and recruitment of neutrophils and lymphocytes. Thus, using a minimally invasive injection technique, equivalent in both circumstances, we have shown that there are marked differences in the inflammatory response between the brain parenchyma and spinal cord parenchyma. This observation has important implications for the treatment of spinal cord injuries
    • 

    corecore