531 research outputs found
Strategies to promote translational research within the European Organisation for Research and Treatment of Cancer (EORTC) Head and Neck Cancer Group: a report from the Translational Research Subcommittee
Head and neck squamous cell cancer (HNSCC) is the sixth leading cause of cancer-related deaths worldwide. These tumors are commonly diagnosed at advanced stages and mortality rates remain high. Even cured patients suffer the consequences of aggressive treatment that includes surgery, chemotherapy, and radiotherapy. In the past, in clinical trials, HNSCC was considered as a single disease entity. Advances in molecular biology with the development of genomic and proteomic approaches have demonstrated distinct prognostic HNSCC patient subsets beyond those defined by traditional clinical-pathological factors such as tumor subsite and stage [Cho W (ed). An Omics Perspective on Cancer Research. New York/Berlin: Springer 2010]. Validation of these biomarkers in large prospective clinical trials is required before their clinical implementation. To promote this research, the European Organisation for Research and Treatment of Cancer (EORTC) Head and Neck Cancer Program will develop the following strategies—(i) biobanking: prospective tissue collection from uniformly treated patients in the setting of clinical trials; (ii) a group of physicians, physician—scientists, and EORTC Headquarters staff devoted to patient-oriented head and neck cancer research; (iii) a collaboration between the basic scientists of the Translational Research Division interested in head and neck cancer research and the physicians of the Head and Neck Cancer Group; and (iv) funding through the EORTC Grant Program and the Network Core Institutions Consortium. In the present report, we summarize our strategic plans to promote head and neck cancer research within the EORTC framewor
RAB25 expression is epigenetically downregulated in oral and oropharyngeal squamous cell carcinoma with lymph node metastasis
Oral and oropharyngeal squamous cell carcinoma (OOSCC) have a low survival rate, mainly due to metastasis to the regional lymph nodes. For optimal treatment of these metastases, a neck dissection is required; however, inaccurate detection methods results in under- and over-treatment. New DNA prognostic methylation biomarkers might improve lymph node metastases detection. To identify epigenetically regulated genes associated with lymph node metastases, genome-wide methylation analysis was performed on 6 OOSCC with (pN+) and 6 OOSCC without (pN0) lymph node metastases and combined with a gene expression signature predictive for pN+ status in OOSCC. Selected genes were validated using an independent OOSCC cohort by immunohistochemistry and pyrosequencing, and on data retrieved from The Cancer Genome Atlas. A two-step statistical selection of differentially methylated sequences revealed 14 genes with increased methylation status and mRNA downregulation in pN+ OOSCC. RAB25, a known tumor suppressor gene, was the highest-ranking gene in the discovery set. In the validation sets, both RAB25 mRNA (P = 0.015) and protein levels (P = 0.012) were lower in pN+ OOSCC. RAB25 mRNA levels were negatively correlated with RAB25 methylation levels (P < 0.001) but RAB25 protein expression was not. Our data revealed that promoter methylation is a mechanism resulting in downregulation of RAB25 expression in pN+ OOSCC and decreased expression is associated with lymph node metastasis. Detection of RAB25 methylation might contribute to lymph node metastasis diagnosis and serve as a potential new therapeutic target in OOSCC
特集 がん検診
Aims—To investigate whether the analysis of immunoglobulin (Ig)/T cell receptor (TCR) rearrangements is useful in the diagnosis of lymphoproliferative disorders. Methods—In a series of 107 consecutive cases with initial suspicion of non-Hodgkin's lymphoma (NHL), Southern blot (SB) analysis of Ig/TCR rearrangements was performed. Results—In 98 of 100 histopathologically conclusive cases, Ig/TCR gene results were concordant. In one presumed diffuse large B cell lymphoma (DLCL) and one follicular lymphoma (FL) case no clonality could be detected by SB analysis, or by polymerase chain reaction (PCR) at second stage. In the DLCL, sampling error might have occurred; the FL was revised after an initial diagnosis of reactivity. In many of the histopathologically inconclusive cases Ig/TCR gene SB analysis was helpful, giving support for the histopathological suspicion. However, because of a lack of (clinical) follow up data this could not be confirmed in a few cases. Conclusions—Experienced haematopathologists or a pathologist panel can diagnose malignant versus reactive lesions in most cases without the need for Ig/TCR gene analysis and can select the 5–10% of cases that might benefit from molecular clonality studies. Key Words: B cell lymphoma • immunoglobulin and T cell receptor genes • clonality analysis • Southern blottin
Discovery of new methylation markers to improve screening for cervical intraepithelial neoplasia grade 2/3
Background: Assessment of DNA promoter methylation markers in cervical scrapings for the detection of cervical intraepithelial neoplasia (CIN) and cervical cancer is feasible, but finding methylation markers with both high sensitivity as well as high specificity remains a challenge. In this study, we aimed to identify new methylation markers for the detection of high-grade CIN (CIN2/3 or worse, CIN2+) by using innovative genome-wide methylation analysis (MethylCap-seq). We focused on diagnostic performance of methylation markers with high sensitivity and high specificity considering any methylation level as positive.
Results: MethylCap-seq of normal cervices and CIN2/3 revealed 176 differentially methylated regions (DMRs) comprising 164 genes. After verification and validation of the 15 best discriminating genes with methylation-specific PCR (MSP), 9 genes showed significant differential methylation in an independent cohort of normal cervices versus CIN2/3 lesions (p < 0.05). For further diagnostic evaluation, these 9 markers were tested with quantitative MSP (QMSP) in cervical scrapings from 2 cohorts: (1) cervical carcinoma versus healthy controls and (2) patients referred from population-based screening with an abnormal Pap smear in whom also HPV status was determined. Methylation levels of 8/9 genes were significantly higher in carcinoma compared to normal scrapings. For all 8 genes, methylation levels increased with the severity of the underlying histological lesion in scrapings from patients referred with an abnormal Pap smear. In addition, the diagnostic performance was investigated, using these 8 new genes and 4 genes (previously identified by our group: C13ORF18, JAM3, EPB41L3, and TERT). In a triage setting (after a positive Pap smear), sensitivity for CIN2+ of the best combination of genes (C13ORF18/JAM3/ANKRD18CP) (74 %) was comparable to hrHPV testing (79 %), while specificity was significantly higher (76 % versus 42 %, p <= 0.05). In addition, in hrHPV-positive scrapings, sensitivity and specificity for CIN2+ of this best-performing combination was comparable to the population referred with abnormal Pap smear.
Conclusions: We identified new CIN2/3-specific methylation markers using genome-wide DNA methylation analysis. The diagnostic performance of our new methylation panel shows higher specificity, which should result in prevention of unnecessary colposcopies for women referred with abnormal cytology. In addition, these newly found markers might be applied as a triage test in hrHPV-positive women from population-based screening. The next step before implementation in primary screening programs will be validation in population-based cohorts
Tudásmenedzsment és a felsőoktatási intézmény, mint vállalat = Knowledge Management and the University as a Company
Purpose: ALK rearrangement detection using FISH is the standard test to identify patients with non–small cell lung carcinoma (NSCLC) eligible for treatment with ALK inhibitors. Recently, ALK protein expression in resectable NSCLC showed predictive value. We evaluated tumor response rate and survival after crizotinib treatment of patients with advanced NSCLC with ALK activation using both dichotomous immunohistochemical (IHC) staining and FISH. Experimental Design: Patients with stage IV NSCLC treated with crizotinib were selected. Tumor response was assessed. ALK rearrangements were detected by FISH (Vysis ALK-break-apart FISH-Probe KIT) and IHC [Ventana ALK (D5F3) CDx assay]. Cohorts of patients with ALK-FISH–positive advanced NSCLC from four other hospitals were used for validation. Results: Twenty-nine consecutive patients with ALK-positive advanced NSCLC diagnosed by FISH and/or IHC on small biopsies or fine-needle aspirations (FNA) were treated with ALK inhibitors. All ALK-IHC–positive patients responded to crizotinib except three with primary resistance. No tumor response was observed in 13 ALK-FISH–positive but ALK-IHC–negative patients. This was confirmed in an external cohort of 16 patients. Receiver operator characteristic (ROC) curves for ALK-IHC and ALK-FISH compared with treatment outcome showed that dichotomous ALK-IHC outperforms ALK-FISH [tumor response area under the curve: (AUC), 0.86 vs. 0.64, P ¼ 0.03; progression-free survival (PFS): AUC 0.86 vs. 0.36, P ¼ 0.005; overall survival (OS): AUC, 0.78 vs. 0.41, P ¼ 0.01, respectively]. Conclusions: Dichotomous ALK-IHC is superior to ALK-FISH on small biopsies and FNA to predict tumor response and survival to crizotinib for patients with advanced NSCLC. Our data strongly suggest adapting the guidelines and using dichotomous ALK-IHC as standard companion diagnostic test to select patients with NSCLC who benefit from ALK-targeting therapy
Cortactin overexpression results in sustained epidermal growth factor receptor signaling by preventing ligand-induced receptor degradation in human carcinoma cells
The chromosome 11q13 region is frequently amplified in human carcinomas and results in an increased expression of various genes including cortactin, and is also associated with an increased invasive potential. Cortactin acts as an important regulator of the actin cytoskeleton. It is therefore very tempting to speculate that cortactin is the crucial gene within the 11q13 amplicon that mediates the invasive potential of these carcinomas. Cortactin also participates in receptor-mediated endocytosis, and recent findings have shown that, during receptor internalization, cortactin overexpression inhibits the ubiquitylation-mediated degradation of the epidermal growth factor receptor, resulting in a sustained ligand-induced epidermal growth factor receptor activity
Temporally Consistent Mitral Annulus Measurements from Sparse Annotations in Echocardiographic Videos
Quality assessment of estrogen receptor and progesterone receptor testing in breast cancer using a tissue microarray-based approach
Assessing hormone receptor status is an essential part of the breast cancer diagnosis, as this biomarker greatly predicts response to hormonal treatment strategies. As such, hormone receptor testing laboratories are strongly encouraged to participate in external quality control schemes to achieve optimization of their immunohistochemical assays. Nine Dutch pathology departments provided tissue blocks containing invasive breast cancers which were all previously tested for estrogen receptor and/or progesterone receptor expression during routine practice. From these tissue blocks
A single digital droplet PCR assay to detect multiple KIT exon 11 mutations in tumor and plasma from patients with gastrointestinal stromal tumors
__Background:__ Gastrointestinal stromal tumors (GISTs) are characterized by oncogenic KIT mutations that cluster in two exon 11 hotspots. The aim of this study was to develop a single, sensitive, quantitative digital droplet PCR (ddPCR) assay for the detection of common exon 11 mutations in both GIST tumor tissue and in circulating tumor DNA (ctDNA) isolated from GIST patients' plasma.
__Methods:__ A ddPCR assay was designed using two probes that cover both hotspots. Available archival FFPE tumor tissue from 27 consecutive patients with known KIT exon 11 mutations and 9 randomly selected patients without exon 11 mutations were tested. Plasma samples were prospectively collected in a multicenter bio-databank from December 2014. ctDNA was analyzed of 22 patients with an exon 11 mutation and a baseline plasma sample.
__Results:__ The ddPCR assay detected the exon 11 mutation in 21 of 22 tumors with exon 11 mutations covered by the assay. Mutations in ctDNA were detected at baseline in 13 of 14 metastasized patien
- …
