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RAB25 expression is epigenetically downregulated in oral and oropharyngeal
squamous cell carcinoma with lymph node metastasis
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ABSTRACT
Oral and oropharyngeal squamous cell carcinoma (OOSCC) have a low survival rate, mainly due to
metastasis to the regional lymph nodes. For optimal treatment of these metastases, a neck dissection is
required; however, inaccurate detection methods results in under- and over-treatment. New DNA
prognostic methylation biomarkers might improve lymph node metastases detection. To identify
epigenetically regulated genes associated with lymph node metastases, genome-wide methylation
analysis was performed on 6 OOSCC with (pNC) and 6 OOSCC without (pN0) lymph node metastases and
combined with a gene expression signature predictive for pNC status in OOSCC. Selected genes were
validated using an independent OOSCC cohort by immunohistochemistry and pyrosequencing, and on
data retrieved from The Cancer Genome Atlas. A two-step statistical selection of differentially methylated
sequences revealed 14 genes with increased methylation status and mRNA downregulation in pNC
OOSCC. RAB25, a known tumor suppressor gene, was the highest-ranking gene in the discovery set. In the
validation sets, both RAB25 mRNA (P D 0.015) and protein levels (P D 0.012) were lower in pNC OOSCC.
RAB25 mRNA levels were negatively correlated with RAB25 methylation levels (P < 0.001) but RAB25
protein expression was not. Our data revealed that promoter methylation is a mechanism resulting in
downregulation of RAB25 expression in pNC OOSCC and decreased expression is associated with lymph
node metastasis. Detection of RAB25 methylation might contribute to lymph node metastasis diagnosis
and serve as a potential new therapeutic target in OOSCC.
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Introduction

Oral and oropharyngeal squamous cell carcinoma (OOSCC)
are the most common subtypes of head and neck squamous
cell carcinomas (HNSCC) and are characterized by an overall
5-year survival < 50%.1 This low survival rate is greatly
impacted by the presence of lymph node (LN) metatasis.2

Patients with metastases in the regional lymph nodes of the
neck have a 5-year survival that is half that of those who do not
present regional metastases.3,4 Therefore, for treatment deci-
sion-making, it is important to accurately detect the presence
LN metastasis. Currently, diagnosis consists only of clinical
examination and imaging, which are known to have low sensi-
tivity and low specificity for LN metastasis detection.5-8 When
LN metastases are detected, a neck dissection is required, but
this surgical procedure is accompanied by neck and shoulder
morbidity. As a result, under- and over-treatment of OOSCC
patients occurs frequently.7,9 Currently, appropriate clinical
and tumor biomarkers that predict the presence of LN metasta-
sis are lacking.

DNA methylation is a mechanism of epigenetic modification
that impacts cellular phenotypes by regulating gene expression and
is known to affect carcinogenesis by altering proliferation rates and
DNA repair.10,11 As a result, DNA methylation screening has been
used as a tool to predict clinical outcome and therapy response in
cancer patients.10,12 Moreover, DNA methylation of several genes
has been reported to have a predictive value for nodal metastasis in
HNSCC, including TWIST1,13 IGF2,14,15 CDKN2A, MGMT,
MLH1, and DAPK.16,17 However, the discovery of these tumor
markers has not improved clinical LNmetastasis detection rate.

Recently, we have reported on the identification of new
DNA methylation markers that predict LN status by Methyl-
Cap-Seq.18 The combination of enrichment of methylated
DNA fragments and next generation sequencing has been
established as a true genome-wide assay compared to other
DNA methylation screening techniques (see ref19 for a review).
Using a quantitative ranking of genomic loci by likelihood of
differential methylation between OOSCC with metastasis nega-
tive LN (pN0) and OOSCC with metastasis positive LN (pNC),
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we identified WISP1 as a hypomethylation marker associated
with pNC OOSCC.18 In the present study, we report on a new
approach tailored toward identifying potentially epigenetically
downregulated genes in the metastatic OOSCC phenotype. Epi-
genetically downregulated genes are more suitable for opening
up new clinical options, as hypermethylation can be more easily
detected in an unmethylated background. In addition, methyl-
ated regions are potentially suited as therapeutic targets, thanks
to the emergence of epigenetic editing and demethylating
agents.19

For this purpose, we used a set of 696 genes that were previ-
ously reported to be differentially expressed between 143 pN0
and 79 pNC OOSCC. This gene signature has a validated nega-
tive predictive power of 89% for LN metastases.20-22 We com-
bined the expression levels of the genes in this predictive gene
signature with DNA methylation data acquired by MethylCap-
Seq analysis.18 Using this approach, we identified 14 genes that
were simultaneously hypermethylated and downregulated in
pNC OOSCC. In this manuscript, we report on the identifica-
tion of RAB25 as the highest-ranking gene and analyze the
association between expression and methylation of RAB25 and
the presence of LN metastases.

Materials and methods

Patient selection

We selected treatment-naive OOSCC patients who underwent a
neck dissection for primary tumor resection resulting in free
resection margins upon histopathological examination at the
University Medical Center Groningen (UMCG), between 1997
and 2008. Pathological revision was performed for all original
hematoxylin and eosin (HE)-slides formalin-fixed, paraffin
embedded (FFPE) tissue blocks. All pN0 tumors were histologi-
cally confirmed or had pN0 status with >2 y LN metastasis-free
follow-up. All patient and tumor characteristics are available in
Supplemental Table 1. For the immunohistochemical study, 227
OOSCC tumors were used for 5 tissue-microarrays (TMA) in
triplicate, as described previously.23 All TMA contained 7 differ-
ent normal tissues that served as control. Human papilloma virus
(HPV) status was tested by p16 immunohistochemistry followed
by high-risk HPV PCR, as previously reported.24 Out of 197
OOSCC patients, 5 were HPV16 positive. A total of 192 HPV-
negative patients (102 pN0 and 90 pNC) were included for fur-
ther analysis. For the MethylCap-Seq study, 6 pNC and 6 pN0
tumors matched for age and primary tumor site were selected
from the total cohort. Leukocytes were acquired from healthy
women for endogenous methylation and methylation back-
ground estimation.25,26 This study was performed in accordance
with the Code of Conduct for proper secondary use of human
tissue in the Netherlands (www.federa.org), and relevant institu-
tional and national guidelines were followed.

DNA isolation

DNA isolation was performed as previously reported.18 Briefly,
2 10-mm thick FFPE sections were deparaffinized in xylene and
incubated in 300 ml 1% SDS-proteinase K at 60�C overnight.
DNA extraction was performed using phenol-chloroform and

ethanol precipitation. The acquired DNA pellets were then
washed with 70% ethanol, dissolved in 50 ml TE-4 (10 mM
Tris/HCl; 0.1 mM EDTA, pH 8.0), and stored at 4�C. To check
the DNA structural integrity, genomic DNA was amplified by
multiplex PCR according to the BIOMED-2 protocol.27 Cases
with products �200 bp were selected for further analyses. DNA
used in MethylCap-Seq was measured by Quant-iTTM

PicoGreen� dsDNA Assay Kit, according to manufacturer’s
protocol (Invitrogen). The DNA used for pyrosequencing was
measured using the Nanodrop ND-1000 Spectrophotometer
(Thermo Scientific). Only samples with an absorbance ratio
260/280 nm > 1.8 were selected for further testing. The num-
ber of tumor cells required for this study was set at 60%, as esti-
mated by HE-staining of 3-mm thick sections.

MethylCap-Seq

MethylCap-Seq analysis was performed as reported previ-
ously.18 Briefly, genome-wide methylation was assessed
using 500 ng of DNA fragmented by Covaris S2 (Covaris)
and obtained from 6 pN0 OOSCC, 6 pNC OOSCC, and 2
pools of leukocytes. Methylated DNA was enriched using
the methyl binding domain protein MeCP2 (MethylCap-kit,
Diagenode) and followed by paired-end next generation
sequencing on the Illumina GA II Sequencer (Illumina).
Subsequently, the enriched, captured, and sequenced reads
were mapped to the human reference genome (NCBI build
37.3) using the BOWTIE software.28 Only the reads that
mapped to unique loci were included. Reads that exactly
overlapped with each other were excluded, as identical reads
are most likely the result of amplification of the same DNA
fragment. Additionally, the mapped distance between the
paired-ends could not be longer than 400 bp. Finally, all
the mapped reads were compared to the “Map of the
Human Methylome” build 2 [http://www.biobix.be/map-of-
the-human-methylome/, BIOBIX (Lab of Bioinformatics and
Computational Genomics), University of Ghent, Ghent, Bel-
gium 2014], which consists of an in-house developed summary
of all experimentally assessed genomic sites of potential differ-
ential methylation [called Methylation Cores (MC)]

To identify a candidate set of genomic regions differentially
methylated between pN0 and pNC OOSCC, all MC located
2,000 bp upstream to 500 bp downstream of the transcription
start site (TSS) or in the first exon of an Ensemble (v65) gene
were statistically compared using R35 with R-package Bayseq.29

The sequencing experiment proved to be underpowered in
terms of sequencing depth and number of biological replicates,
precluding any definite conclusions. Therefore, we focused on
the identification of the most interesting set of putatively differ-
entially methylated regions that could be validated in a subse-
quent setup. This led to the following 2-step MC selection
method: In the first step, the number of methylated samples
was determined for both groups (pNC and pN0). A sample
was called [unmethylated] if there were no reads and [methyl-
ated] if there were one or more reads. A Fisher exact test was
performed to rank the MCs for differential number of methyl-
ated samples between both groups. Ties in P-values, due to the
limited number of samples, were broken by secondary ranking
on log fold-change methylation between groups (average
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methylation incremented by 1 in both groups). In contrast to
our previous quantitative ranking based on differential methyl-
ation,18 this pre-selection is unaffected by the variability of the
signal in the methylated group. In the second step, the Mann-
Whitney-U test was applied to the 5,000 highest-ranked MCs
from the first step. MCs with a P-value < 0.05 (a total of 1,709)
were retained for further consideration. Finally, only the MCs
associated with genes that have an annotated function in the
UniProtKB/Swiss-Prot database30 were selected for further
analyses.

Positive and negative predictive value for the methylation
status of all MCs was calculated. For each MC all OOSCC
with a read count of �3 reads were considered as methyl-
ated and OOSCC with a read count <3 reads were consid-
ered as unmethylated. The positive predictive value was
then calculated as follows: (true positive pNC OOSCC) /
(true positive pNC OOSCC C false positive pN0 OOSCC).
The negative predictive value was calculated as: (true nega-
tive pN0 OOSCC) / (true negative pN0 OOSCC C false
negative pNC OOSCC).

Gene selection

To identify epigenetically downregulated genes in pNC
OOSCC, a validated gene signature predictive of pN-status
in OOSCC (published by Hooff et al.22) was combined with
MethylCap-Seq data (Fig. 1). This gene signature is based
on a diagnostic microarray consisting of 696 genes and was
validated on 222 OOSCC from 8 different medical centers

in The Netherlands.20-22 Genes that were found by Methyl-
Cap-Seq to be hypermethylated in pNC OOSCC and found
to be downregulated in pNC OOSCC by microarray were
selected for further analyses.

The Cancer Genome Atlas data analysis

The Cancer Genome Atlas (TCGA) validation was per-
formed as reported previously.18 Clinical data for all
HNSCC patients (n D 423) was downloaded from the
TCGA data portal (https://tcga-data.nci.nih.gov/tcga/) on
April 7th 2013. Patients with a tumor located in “Floor of
Mouth,” “Oral Cavity,” or “Oral Tongue,” with known patho-
logical N-status, available methylation status, and mRNA data
were selected (n D 147). Patient and tumor characteristics of
the selected TCGA cases are presented in Supplemental Table 1.
All pathological N-statuses were dichotomized for further
analyses.

For methylation analysis, level 3 methylation Illumina Infin-
ium HumanMethylation450 (450K) data was downloaded for
the previously selected oral SCC (OSCC) patients from the
TCGA data portal (https://tcga-data.nci.nih.gov/tcga/) on April
7th 2013. Additional Infinium 450K probe information was
acquired from the gene expression omnibus (GEO) accession
number GSE42409, including, distance to TSS, associated CpG
island, and chromosomal localization.9 All probes located up to
2,000 bp upstream and 500 bp downstream of a TSS were
selected for further analyses. R (version 3.0.3),35 Rstudio

Figure 1. Strategy to identify epigenetically downregulated genes in pNC OSCC. On the left: published gene signatures predictive of pN-status in OSCC were used to
identified significantly downregulated genes in pNC OSCC.20-22 On the right: MethylCap-Seq was performed on 6 pN0 OSCC and pNC OSCC.18 All reads of MCs in gene
promoter regions were ranked according to the likelihood of differential methylation and an approximate FDR. The 5,000 MCs with the lowest FDR were further tested
by Mann-Whitney-U. The MC associated with genes without annotated gene functions were excluded. In the middle: the gene signature and methylation data were com-
pared to select epigenetically regulated genes in pNC OSCC (n D 23). From these 23 genes, epigenetically downregulated genes in pNC OSCC were selected. Based on
the amount of mRNA downregulation, statistical differences in methylation between pN0 and pNC OSCC, and positive and negative predictive value, RAB25 was selected
as the most significantly epigenetically downregulated gene in pNC OSCC compared to pN0 OSCC.
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(RStudio, Inc.), and the Lumi package31 were used to convert
the 450K probe b-values to M-values using the beta2m func-
tion. Subsequently, all M-values were quantile-normalized by
the normalizeBetweenArrays function of R package Limma.32

Using the eBayes function of the Lumi R package, all 450K
probes located 2,000 bp upstream to 500 bp downstream of the
RAB25 TSS (a total of 3) were statistically compared between
pN0 OSCC (n D 61) and pNC OSCC (n D 86).31

For expression analysis, all mRNA expression z-scores
(RNA Seq V2 RSEM) from the HNSCC TCGA “provisional
cancer study” were downloaded from the cBioportal public
portal (http://www.cbioportal.org/public-portal/)33,34 on April
30th 2014 and statistically compared between pN0 and pNC
OSCC by Mann-Whitney test using R. The optimal cut-off
value for RAB25 mRNA levels between pN0 and pNC OSCC
was determined to be z-score: ¡0.4250 by ROC-curve analysis,
using SPSS version 22.0.1 (IBM). For copy number and muta-
tion analyses, all RAB25 mutation and GISTIC data from the
HNSCC TCGA “provisional cancer study” were downloaded
from cBioportal public portal on April 6th 2015. TCGA sur-
vival data were incomplete and varied between testing labs and
were therefore not analyzed.

Spearman rank correlations between RAB25mRNA z-scores
and normalized M-values of all RAB25 probes were calculated
by the basic R function cor.test.35

Putative RAB25-regulating miRNAs were identified using
the miRDB database (http://mirdb.org/miRDB/) on April 6th
2015 (n D 12).36 Subsequently, for all miRNAs with available
data (n D 6), all RNA Seq V2 RSEM (z-score threshold of
§ 2), mutation, and gene copy number data for the miRNA
and RAB25 were downloaded from the cBioportal public portal
(http://www.cbioportal.org/public-portal/)33,34 on April 17th
2015. In total, 5 different types of gene copy number alterations
were distinguished: -2 (homozygous deletion), -1 (hemizygous
deletion), 0 (no gene copy number alteration), 1 (gain), and
2 (high-level amplification).

Bisulfite pyrosequencing

Extracted genomic DNA (1 mg/sample) was sodium bisulfite-
treated using the EZ DNA methylation kit (Zymo, BaseClear,
Leiden, The Netherlands) according to the manufacturer’s pro-
tocol. RAB25 bisulfite pyrosequencing PCR and sequencing pri-
mers were designed using Pyromark Assay design version
2.0.1.15 (Qiagen). All primer sequences and PCR conditions
are available in Supplemental Table 2. Bisulfite treated DNA
was amplified using the Pyromark PCR kit according to the
company protocol (Qiagen). Each reaction was performed with
12.5 ml 2x PCR master mix, 200 nmol forward primer, and
200 nmol reverse primer. PCR was performed as follows:
15 min 95�C, 50 cycles of (30 sec 94�C, 30 sec 59�C, 30 sec
72�C), and 10 min 72�C. PCR products were checked on a 2%
agarose gel containing 15 ml ethidium bromide. Biotinylated
PCR product (15 ml ) was captured using 1 ml Streptavidin-
coated Sepharose High Performance beads (GE Healthcare).
Captured amplicons were then purified using the Q24 Vacuum
Workstation (Qiagen), according to the manufacturer’s proto-
col, washed with 70% alcohol, denatured using PyroMark
Denaturation Solution (Qiagen), and washed with PyroMark

Wash Buffer (Qiagen). The purified PCR product was then
added to 25 ml 0.3 mM RAB25 sequence primers and fol-
lowed by bisulfite pyrosequencing analysis using the Pyro-
mark Q24 (Qiagen). Pyrosequencing results were analyzed
using the provided Pyromark Q24 software version 2.0.6
(Qiagen). Each pyrosequencing run included 3 control sam-
ples: leukocyte DNA from healthy patients as control for
normal/endogenous methylation levels; in vitro methylated
(SssI digested) leukocyte DNA as hypermethylation control;
and whole-genome amplified (WGA) leukocyte DNA,
amplified using the Illustra Ready-To-Go GenomiPhi HY
DNA Amplification Kit (GE Healthcare), as a control for
unmethylated DNA.

Immunohistochemistry

FFPE tumor tissue sections (3-mm thick) were deparaffinized in
xylol and rehydrated using decreasing ethanol concentrations
(100%, 96%, 80%, 70%, and 50%). Antigen retrieval was per-
formed using a citrate buffer (10 mM citric acid, 0.05% Tween
20, pH 6.0) and heated in a microwave oven for 15 min at
300 W. Endogenous peroxidase was blocked with a 0.3% H2O2

solution for 30 min at room temperature, followed by incuba-
tion with a mouse monoclonal antibody to human RAB25
clone 3F12F3 (Santa Cruz), diluted 1:50 in PBS with 1% bovine
serum albumin, overnight at 4�C. Subsequently, primary anti-
body detection was achieved by incubation with EnvisionC
(Dako) horseradish peroxidase for 30 min at room temperature
and developed with 3,3-diaminobenzidine solution (Dako)
containing 0.03% H2O2 and counterstained with hematoxylin
for 2 min. Mammary epithelial cells were used as a control for
positive RAB25 expression.37 The percentage of positive tumor
cells was scored as previously reported.38,39 Three RAB25
immunoreactivity intensities were also recorded: 0 (no stain-
ing); 1 (moderate staining); and 2 (strong staining). The level
of intensity of the staining was scored independently by 2
blinded observers (MJAMC and MFM). Discordant results
were discussed until consensus was reached or decided by an
experienced HNSCC pathologist (BvdV). The optimal cut-off
between high and low RAB25 positive neoplastic cells, defined
as the percentage of neoplastic cells with tumors with any level
of expression (moderate/strong), was determined by ROC
curve analysis relative to pN-status and established as 33%
RAB25 positive tumor cells. A total of 178 out of the 192 HPV-
negative HNSCC were used for RAB25 immunoreactivity
analysis.

Statistical analysis

Statistical analysis was performed using SPSS (IBM) and R
(version 3.0.3). Associations between RAB25 expression
and clinico-pathological characteristics were tested using
the x2 test. Survival was defined as the number of days
between the first treatment and disease specific death
(DSS) or disease recurrence (DFS) and analyzed by
Kaplan-Meier curves and log rank test. All tests were per-
formed as 2-tailed and a P-value <0.05 was considered
statistically significant.
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Results

RAB25 is the highest-ranking differentially methylated and
expressed gene in pNC OOSCC

To identify genes whose expression is regulated by methylation,
a validated gene expression signature and methylation data
were combined using a stepwise selection approach as outlined
in Fig. 1. After combining the gene signature and methylation
data, 23 genes were found to be present in both the differen-
tially methylated gene panel and the differentially expressed
gene panel (Supplemental Table 3).

Out of these 23 potentially epigenetically regulated genes, 20
genes were hypermethylated in the pNC OOSCC of the
UMCG panel, as identified by MethylCap-Seq. Finally, 14 of
these 20 genes (ACTA1, BRUNOL4, COBLL1, GFRA1, H2AFY,
IL22RA1, KRT17, LAMP3, MALL, MAST4, NDUFA10, RAB25,
S100A9, and WDR13) showed both promoter hypermethyla-
tion as well as expression downregulation in pNC OOSCC
(Table 1). Of these 14 genes, RAB25 showed the highest down-
regulation of expression and concomitant highest rate of hyper-
methylation in pNC OOSCC (Table 1). Moreover, the RAB25
read count distribution between pN0 and pNC OOSCC
showed the highest positive and negative predictive value for
pN-status (Table 1 and Supplemental Table 3). Therefore,
RAB25 was studied in more detail as an epigenetically downre-
gulated gene in pNC OOSCC.

Validation of epigenetic regulation of RAB25 in the
independent TCGA cohort

Our data revealed a strong association between decreased
mRNA expression and increased methylation of the RAB25
gene in pNC OOSCC compared to pN0 OOSCC. To confirm
this association, we selected all 147 OSCC available in the pub-
lic TCGA database with available RAB25 mRNA levels, RAB25
methylation data, and pN-status data. Among the Illumina
Infinium 450K probes, 5 probes were associated with the

RAB25 gene (Supplemental Table 4). In total, 3 probes
(cg15896939, cg09243900, and cg19580810) were located in the
RAB25 promoter region (Supplemental Fig. 1). Methylation
status of these 3 RAB25 promoter probes (cg15896939,
P D 0.003; cg09243900, P D 0.023; and cg19580810, P < 0.001)
was significantly higher in the OSCC with low RAB25 mRNA
levels (Fig. 2A). Additionally, methylation levels of all 3 RAB25
probes showed a significant negative correlation with RAB25
mRNA levels (cg15896939, R D ¡0.230, P D 0.005;
cg09243900, R D ¡0.162, P D 0.049; and cg19580810,
R D ¡0.390, P < 0.001; Fig. 2B). Analysis of TGCA database
confirmed that methylation of RAB25 is associated with
decreased expression levels. Additionally, the location of 2 of
these 3 probes (cg15896939 and cg09243900) overlapped with
the RAB25 MCs annotated by MethylCap-Seq (Supplemental
Fig. 1).

Association between RAB25 methylation and lymph node
status

To determine whether RAB25 promoter methylation is asso-
ciated with pN-status in OSCC, we analyzed the methyla-
tion levels of the 3 RAB25 promoter probes (cg09243900,
cg15896939, and cg19580810) in 61 pN0 and 86 pNC
OSCC in the TCGA database. No significantly different
methylation was found for any of the 3 RAB25 promoter
probes between pN0 and pNC OSCC (Supplemental
Fig. 2A). Additionally, RAB25 methylation was measured in
an independent UMCG OOSCC cohort (n D 47) using 3
different bisulfite pyrosequencing assays of the promoter
region containing the annotated RAB25 MCs (bisulfite
primer locations are shown in Supplemental Fig. 1). No sig-
nificant differences in RAB25 methylation levels were found
between pN0 and pNC OOSCC for any of the 9 CpG sites
(Supplemental Fig. 2B). These data suggest that DNA meth-
ylation of RAB25 promoter region is not directly related to
LN metastasis in OOSCC.

Table 1. Epigenetically downregulated genes in pNC OSCC. All 14 potentially epigenetically downregulated genes in pNC OSCC compared to pN0 OSCC after cross-refer-
ence of expression microarray and MethylCap-Seq data (see Fig. 1). The positive and negative predictive value of the reads for pNC status, associated hypermethylation,
read distribution between pN0 and pNC OSCC, and predictive value of the methylation data are illustrated. P-value for the differential DNA methylation was calculated
using the Mann-Whitney-U test. Positive and negative predictive value for the methylation status of all MCs were calculated as follows: OOSCC with a read count of � 3
reads were considered true positives and OOSCC with a count read<3 were considered true negatives. Subsequently, the positive predictive value was then calculated
as: (true positive pNC OOSCC) / (true positive pNC OOSCC C false positive pN0 OOSCC). Finally, the negative predictive value was calculated as: (true negative pN0
OOSCC) / (true negative pN0 OOSCC C false negative pNC OOSCC).

Methylation Core data DNA Methylation data mRNA data Epigenetic regulation

Gene name Chr Distance TSS (bp) length (bp) P-Value Hypermeth in Pos. Pred. Neg Pred. expression pNC mRNA & Meth

RAB25 1 ¡108 233 0.02 pNC 100% 86% ¡0.15 # Negative
COBLL1 2 ¡1247 191 0.02 pNC 100% 75% ¡0.14 # Negative
GFRA1 10 ¡809 120 0.04 pNC 100% 67% ¡0.11 # Negative
S100A9 1 490 125 0.04 pNC 100% 60% ¡0.1 # Negative
LAMP3 3 0 284 0.05 pNC 80% 71% ¡0.09 # Negative
ACTA1 1 ¡756 273 0.01 pNC 100% 67% ¡0.08 # Negative
KRT17 17 ¡296 1 0.02 pNC 100% 55% ¡0.08 # Negative
MAST4 5 ¡271 57 0.03 pNC 0% 50% ¡0.06 # Negative
IL22RA1 1 114 229 0.05 pNC 75% 63% ¡0.04 # Negative
BRUNOL4 18 ¡1543 24 0.03 pNC 100% 67% ¡0.03 # Negative
NDUFA10 2 ¡1155 9 0.02 pNC 100% 55% ¡0.01 # Negative
MALL 2 413 152 0.03 pNC 100% 55% ¡0.01 # Negative
WDR13 X 0 54 0.05 pNC 100% 55% ¡0.01 # Negative
H2AFY 5 ¡1065 90 0.03 pNC 100% 55% ¡0.01 # Negative
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Association between RAB25 expression and lymph node
status

To determine the association between RAB25 expression and LN
status inOOSCC, we analyzedRAB25mRNA levels inOSCCusing
data available in the public TCGA database. Analyses of RAB25
mRNA levels in 147 OSCC revealed significantly lower (PD 0.015)
RAB25 expression in pNC (nD86) than in pN0 OSCC (nD61)
(Fig. 3A). High RAB25mRNA expression was found to be signifi-
cantly associated with pN0-status (P D 0.006) (Table 2A). High
RAB25mRNA expression was also associated with decreased lym-
pho-vascular invasion (PD 0.029) (Table 2A).

To validate whether RAB25 protein expression was also
associated with lymph node status in our UMCG OSCC
cohort, immunohistochemistry was performed on 192
HPV-negative OOSCC. We could score RAB25 immunore-
activity in 178 OOSCC. RAB25 immunohistochemistry
(example in Fig. 4) revealed a significant lower number of
neoplastic cells showing RAB25 protein expression in pNC
OOSCC (P D 0.012; Fig. 3B). Using a cut-off of 33%
RAB25-positive neoplastic cells to define [low] and [high]
expression, low RAB25 expression was significantly associ-
ated with pNC OOSCC (P D 0.002; Table 2B). The associa-
tion between low RAB25 expression and pNC status is in

Figure 2. RAB25 mRNA levels in relation with the 3 RAB25 TSS 450K probes (cg09243900, cg15896939, and cg19580810) methylation levels in the TCGA OSCC cohort. (A)
RAB25methylation levels compared between OSCC with high RAB25mRNA levels and OSCC with low RAB25mRNA levels. The M-values of the 3 RAB25 Infinium 450K pro-
moter probes were significantly higher in OSCC with low RAB25 mRNA z-scores compared to OSCC with high RAB25 mRNA z-scores. (B) Spearman correlations between
RAB25 methylation and RAB25 mRNA levels. All 3 RAB25 promoter probes showed a significant negative correlation between RAB25 promoter probe M-values and RAB25
mRNA z-scores.
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good agreement with the TCGA analysis (Table 2
and Fig. 3).

RAB25 protein level of expression was not associated
with other clinical characteristics (Table 2B), DSS
(P D 0.232), or DFS-survival (P D 0.260). These data sup-
port an anti-invasive function of RAB25 expression in
OOSCC. Analysis of RAB25 protein levels and RAB25 MC
levels revealed no associations between RAB25 methylation

and RAB25 protein expression in the UMCG cohort
(data not shown).

Analysis of RAB25 gene copy number alterations,
mutations, and miRNAs

RAB25 mRNA expression is significantly associated with the
methylation status of the RAB25 promoter (Table 1 and

Figure 3. RAB25 expression levels between pN0 and pNC OSCC in the UMCG and TCGA OSCC cohort. (A) pNC OSCC in the TCGA cohort (nD 86) express significantly less
RAB25 mRNA than pN0 OSCC (n D 61), as revealed by Mann-Whitney-U test. (B) pN C OSCC in the UMCG cohort (n D 87) have significantly less RAB25-positive tumor
cells than pN0 OSCC (nD 91), as revealed by Mann-Whitney-U test.

Table 2. Correlations between RAB25 expression and tumor characteristics. A) Associations between RAB25 mRNA expression and the clinical characteristics of the TCGA
OSCC cohort. B) Associations between RAB25 protein expression and the clinical characteristics of the UMCG OSCC cohort.

A) RAB25 mRNA in TCGA cohort B) RAB25 protein in UMCG cohort

Low RAB25 mRNA High RAB25 mRNA P-value Low RAB25 protein High RAB25 protein P-value

N (%) N (%) N (%) N (%)
Total tumors 58 (40) 89 (60) 18 (10) 160 (90)
Total patients 58 (40) 89 (60) 18 (10) 160 (90)
Gender

Male 17 (36) 30 (64) 0.576 15 (14) 96 (86) 0.053
Female 41 (41) 59 (59) 3 (5) 64 (95)

Age at diagnosis (yrs)
Median 61 60 0.412 59 64 0.197
Range 26–85 19–87 38–80 25–94

Site
OSCC [Not Applicable] 14 (9) 142 (91) 0.18
Other 4 (18) 18 (82)

pT status
1–2 24 (41) 35 (59) 0.804 12 (10) 106 (90) 0.972
3–4 34 (39) 54 (61) 6 (10) 54 (90)

pN status
0 16 (26) 45 (74) 0.006 3 (3) 88 (97) 0.002
C 42 (49) 44 (51) 15 (17) 72 (83)

Extranodal spread (only pNC)
No 19 (48) 21 (52) 0.154 9 (19) 38 (81) 0.61
Yes 17 (65) 9 (35) 6 (15) 34 (85)

Perineural invasion
No 18 (35) 33 (65) 0.289 10 (9) 106 (91) 0.595
Yes 31 (45) 38 (55) 5 (11) 39 (89)

Lymphovascular invasion
No 27 (32) 56 (68) 0.029 12 (10) 112 (90) 0.573
Yes 17 (55) 14 (45) 3 (14) 19 (86)

Histological differentiation
Well 4 (22) 14 (78) 0.11 2 (5) 38 (95) 0.181
Moderate or Poor 54 (42) 75 (58) 16 (13) 112 (87)

Infiltration depth (mm) 0.537
Median [Not Available] 9 15
Range 3.1 – 22 0.07 – 40

Infiltration depth (mm)
<4 mm [Not Available] 3 (11) 24 (89) 0.823
>4 mm 13 (10) 121 (90)
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Fig. 2). Additionally, both RAB25 mRNA and RAB25 protein
expression are associated with pN-status (Fig. 3, Table 2).
However, RAB25 methylation status (Supplemental Fig. 2) is
not associated with pNC status. Therefore, DNA methylation
only partly explains the regulation of RAB25 protein expres-
sion. To assess the frequency of other (epi)genetic changes
that might regulate RAB25 protein expression and a possible
association with LN status, the frequency of RAB25 gene
mutations and gene copy number alterations were assessed in
147 OSCC cases selected from the TCGA database. We found
a single OSCC case (1/147) carrying a RAB25 mutation
(RAB25-Q98H). We observed RAB25 copy number gain in 29
OSCC cases (1 case with high level amplification) and hemizy-
gous RAB25 deletions (none homozygous) were detected in 15

OSCC. RAB25 mRNA levels were significantly higher in
OSCC with RAB25 gene copy number increase (P D 0.024),
but RAB25 mRNA levels were not associated with hemizygous
deletions of RAB25 (P D 0.330). Additionally, pN-status was
not associated with RAB25 copy number gain (P D 0.540),
RAB25 copy number loss (P D 0.785), or with RAB25 mRNA
levels, RAB25 copy number gain (P D 0.143), or RAB25 copy
number loss (P D 0.584).

The miRDB database contains 12 miRNAs putatively target-
ing RAB25 mRNA (hsa-miR-504-5p, hsa-miR-4725-5p, hsa-
miR-608, hsa-miR-4651, hsa-miR-185-3p, hsa-miR-4520-3p,
hsa-miR-4447, hsa-miR-8071, hsa-miR-4761-3p, hsa-miR-
1296-3p, hsa-miR-6862-5p, hsa-miR-4253). For 6 of those
miRNAs, expression, mutation, and copy number data were
available from the TCGA database. None of the 6 miRNAs dis-
played aberrant gene expression, mutations, or copy number
alterations in the 530 HNSCC present in the TCGA database
(data not shown).

Discussion

We used a combination of genome-wide methylation analysis
and a validated gene signature predictive for pNC status in
OOSCC to identify potential epigenetically regulated genes in
the OOSCC metastatic phenotype. Of all analyzed genes,
RAB25 is the most likely epigenetically regulated and predictive
for pNC OOSCC. RAB25 is reported to be a tumor suppressor
gene lost in HNSCC subtypes,38,39 that is also hypermethylated
in HNSCC cell lines compared to healthy tissue,38,39 underlin-
ing its importance and epigenetic inhibition of RAB25 protein
expression during carcinogenesis.

The RAB25 protein is a member of the RAB11 subfamily of
small GTPases. These GTPases are emerging as novel and
important regulators of cancer development and progression
(for a review see ref. 38). Aberrant expression of small GTPases
in general, and RAB25 specifically,40,41 has been detected in
various cancers,42,43 including HNSCC and OSCC.38,39 Interest-
ingly, changes in RAB25 expression are correlated with tumor
invasiveness in almost all cancer types,44-47 but only in triple-
negative breast and HNSCC, RAB25 functions as a tumor sup-
pressor gene, and loss of RAB25 leads to increased migration
and invasion.38,47-49

Epigenetic downregulation of RAB25 was reported in ovar-
ian cancer compared to normal ovarian tissue,50 esophageal
cancer cell lines, compared to paired normal esophageal tis-
sue,38 and in HNSCC cell lines.38,39 This supports the hypothe-
sis that loss of RAB25 expression in pNC OSCC is caused by
hypermethylation, since both increased hypermethylation51

and metastasis are associated with progressive cancer52 and,
specifically, HNSCC.53 Additionally, epigenetic regulation of
the expression of other small GTPases, to which RAB25 belong,
has been shown in metastatic lung cancer54 and in colon
cancer.55

We confirmed that loss of RAB25 protein expression corre-
lated with the presence of LN metastasis in HNSCC and
OOSCC, specifically,38,39,48 and could be used to predict LN
metastasis in OOSCC.20-22 Because of our selection method,
genes selected were not only associated with the presence of
nodal metastases, but, more specifically, were downregulated in

Figure 4. Representative examples of RAB25 expression in 2 OSCC as detected by
immunohistochemistry. Tissues were scored by the amount of RAB25-positive cells.
(A) Example of a well-differentiated OSCC with a high amount of RAB25-expressing
cells. (B) Example of a poorly differentiated OSCC with a very low amount of
RAB25-positive cells.
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pNC cases. These selection criteria are reflected in the fact that
RAB25 mRNA and protein expression showed the best predic-
tive value for nodal metastases in patients where expression is
low (a high positive predictive value). Consequently, the nega-
tive predictive value is lower. This effect is independent of T-
stage (data not shown), but should be taken into account in
future studies into the clinical application of RAB25 expression.
Additionally, MethylCap-Seq identified RAB25 as differentially
methylated between pN0 OOSCC and pNC OOSCC. These
data suggest that RAB25 is epigenetically regulated and lost
during cancer progression as a result of hypermethylation.
However, we could not confirm differential methylation on a
larger independent cohort using bisulfite pyrosequencing and
Illumina Infinium 450K TCGA data, although we did find sig-
nificant correlation between RAB25 mRNA levels and RAB25
DNA methylation levels. These data suggest that RAB25 is reg-
ulated by DNA methylation, but also potentially subjected to
other forms of epigenetic regulation, such as histone modifica-
tion or miRNAs. However, previous reports show no relation
between histone modifications and RAB25 expression in esoph-
ageal cancer38 and alterations of 6 miRNAs that regulate RAB25
were found to be almost non-existent in the TCGA OSCC data-
base (this paper). Most RAB25 gene copy number alterations
were amplifications and can thus not be responsible for down-
regulated RAB25 protein expression. The frequency of RAB25
loss was, however, very low in the TCGA OSCC database to
draw firm conclusions.

In summary, our data suggest that epigenetic silencing of
RAB25 contributes to LN metastasis in OOSCC patients.
Therefore, RAB25 protein expression assessment might con-
tribute to better patient diagnosis and RAB25 epigenetic editing
might open new therapeutic options for the treatment of LN
metastasis through epigenetic editing or using demethylating
agents in order to increase OOSCC patient prognosis and care.
Genome-wide methylation analysis using the MethylCap-Seq is
a promising approach to identify important epigenetically regu-
lated genes in carcinogenesis.
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