4,588 research outputs found

    Ionization by bulk heating of electrons in capacitive radio frequency atmospheric pressure microplasmas

    Full text link
    Electron heating and ionization dynamics in capacitively coupled radio frequency (RF) atmospheric pressure microplasmas operated in helium are investigated by Particle in Cell simulations and semi-analytical modeling. A strong heating of electrons and ionization in the plasma bulk due to high bulk electric fields are observed at distinct times within the RF period. Based on the model the electric field is identified to be a drift field caused by a low electrical conductivity due to the high electron-neutral collision frequency at atmospheric pressure. Thus, the ionization is mainly caused by ohmic heating in this "Omega-mode". The phase of strongest bulk electric field and ionization is affected by the driving voltage amplitude. At high amplitudes, the plasma density is high, so that the sheath impedance is comparable to the bulk resistance. Thus, voltage and current are about 45{\deg} out of phase and maximum ionization is observed during sheath expansion with local maxima at the sheath edges. At low driving voltages, the plasma density is low and the discharge becomes more resistive resulting in a smaller phase shift of about 4{\deg}. Thus, maximum ionization occurs later within the RF period with a maximum in the discharge center. Significant analogies to electronegative low pressure macroscopic discharges operated in the Drift-Ambipolar mode are found, where similar mechanisms induced by a high electronegativity instead of a high collision frequency have been identified

    The degradation of MgB2 under ambient environment

    Full text link
    The superconductivities of samples prepared by several procedures were found to degrade under ambient environment. The degradation mechanism was studied by measuring the change of surface chemical composition of dense MgB2 pellets (prepared by hot isostatic pressure, HIPed) under atmospheric exposure using X-ray Photoelectron Spectroscopy (XPS). Results showed that samples with poor connectivity between grains and with smaller grain sizes degrade with time when exposed to ambient conditions. In these samples, the Tc did not change with time, but the superconducting transition became broader and the Meissner fraction decreased. In contrast, our well-sintered and the HIPed samples remained stable for several months under ambient condition. The degradation was found to be related to surface decomposition as observed by XPS. We observed the formation of oxidized Mg, primarily in the form of a Mg hydroxide, the increase of C and O contents, and the reduction of B concentration in the surface layer of MgB2 samples.Comment: 15 pages, 3 figure

    Pion damping width from SU(2) x SU(2) NJL model

    Full text link
    Within the framework of the NJL model, we investigate the modification of the pion damping width in a hot pion gas for temperatures ranging from 0 to 180 MeV. The pion is found to broaden noticeably at T > 60 MeV. Near the chiral phase transition T ~ 180 MeV, the pion width is saturated and amounts to 70 MeV. The main contribution to the width comes from pion-pion collisions. Other contributions are found negligibly small.Comment: LaTeX2e, 13 pages, 2 figure

    Nucleon-Nucleon Phase Shifts and Pairing in Neutron Matter and Nuclear Matter

    Get PDF
    We consider 1S0 pairing in infinite neutron matter and nuclear matter and show that in the lowest order approximation, where the pairing interaction is taken to be the bare nucleon-nucleon (NN) interaction in the 1S0 channel, the pairing interaction and the energy gap can be determined directly from the 1S0 phase shifts. This is due to the almost separable character of the NN interaction in this partial wave. Since the most recent NN interactions are charge-dependent, we have to solve coupled gap equations for proton-proton, neutron-neutron, and neutron-proton pairing in nuclear matter. The results, however, are found to be close to those obtained with charge-independent potentials.Comment: 5 pages, 3 figures, RevTe

    Strange nuclear matter within Brueckner-Hartree-Fock Theory

    Get PDF
    We have developed a formalism for microscopic Brueckner-type calculations of dense nuclear matter that includes all types of baryon-baryon interactions and allows to treat any asymmetry on the fractions of the different species (n, p, Λ\Lambda, Σ0\Sigma^0, Σ+\Sigma^+, Σ\Sigma^-, Ξ\Xi^- and Ξ0\Xi^0). We present results for the different single-particle potentials focussing on situations that can be relevant in future microscopic studies of beta-stable neutron star matter with strangeness. We find the both the hyperon-nucleon and hyperon-hyperon interactions play a non-negligible role in determining the chemical potentials of the different species.Comment: 36 pages, LateX, includes 8 PostScript figures, (submitted to PRC

    Hybrid stars with the color dielectric and the MIT bag models

    Full text link
    We study the hadron-quark phase transition in the interior of neutron stars (NS). For the hadronic sector, we use a microscopic equation of state (EOS) involving nucleons and hyperons derived within the Brueckner-Bethe-Goldstone many-body theory, with realistic two-body and three-body forces. For the description of quark matter, we employ both the MIT bag model with a density dependent bag constant, and the color dielectric model. We calculate the structure of NS interiors with the EOS comprising both phases, and we find that the NS maximum masses are never larger than 1.7 solar masses, no matter the model chosen for describing the pure quark phase.Comment: 11 pages, 5 figures, submitted to Phys. Rev.

    Differential Impact of Plant Secondary Metabolites on the Soil Microbiota

    Get PDF
    Plant metabolites can shape the microbial community composition in the soil. Two indole metabolites, benzoxazolinone (BOA) and gramine, produced by different Gramineae species, and quercetin, a flavonoid synthesized by many dicot species, were studied for their impacts on the community structure of field soil bacteria. The three plant metabolites were directly added to agricultural soil over a period of 28 days. Alterations in bacterial composition were monitored by next generation sequencing of 16S rRNA gene PCR products and phospholipid fatty acid analysis. Treatment of the soil with the plant metabolites altered the community composition from phylum to amplicon sequence variant (ASV) level. Alpha diversity was significantly reduced by BOA or quercetin, but not by gramine. BOA treatment caused a decrease of the relative abundance of 11 ASVs, while only 10 ASVs were increased. Gramine or quercetin treatment resulted in the increase in relative abundance of many more ASVs (33 or 38, respectively), most of them belonging to the Proteobacteria. Isolation and characterization of cultivable bacteria indicated an enrichment in Pseudarthrobacter or Pseudomonas strains under BOA/quercetin or BOA/gramine treatments, respectively. Therefore, the effects of the treatments on soil bacteria were characteristic for each metabolite, with BOA exerting a predominantly inhibitory effect, with only few genera being able to proliferate, while gramine and quercetin caused the proliferation of many potentially beneficial strains. As a consequence, BOA or gramine biosynthesis, which have evolved in different barley species, is accompanied with the association of distinct bacterial communities in the soil, presumably after mutual adaptation during evolution

    Electron power absorption dynamics in capacitive radio frequency discharges driven by tailored voltage waveforms in CF4

    Get PDF
    The power absorption dynamics of electrons and the electrical asymmetry effect in capacitive radio-frequency plasmas operated in CF4 and driven by tailored voltage waveforms are investigated experimentally in combination with kinetic simulations. The driving voltage waveforms are generated as a superposition of multiple consecutive harmonics of the fundamental frequency of 13.56 MHz. Peaks/valleys and sawtooth waveforms are used to study the effects of amplitude and slope asymmetries of the driving voltage waveform on the electron dynamics and the generation of a DC self-bias in an electronegative plasma at different pressures. Compared to electropositive discharges, we observe strongly different effects and unique power absorption dynamics. At high pressures and high electronegativities, the discharge is found to operate in the drift-ambipolar (DA) heating mode. A dominant excitation/ionization maximum is observed during sheath collapse at the edge of the sheath which collapses fastest. High negative-ion densities are observed inside this sheath region, while electrons are confined for part of the RF period in a potential well formed by the ambipolar electric field at this sheath edge and the collapsed (floating potential) sheath at the electrode. For specific driving voltage waveforms, the plasma becomes divided spatially into two different halves of strongly different electronegativity. This asymmetry can be reversed electrically by inverting the driving waveform. For sawtooth waveforms, the discharge asymmetry and the sign of the DC self-bias are found to reverse as the pressure is increased, due to a transition of the electron heating mode from the α-mode to the DA-mode. These effects are interpreted with the aid of the simulation results
    corecore