108 research outputs found

    Growth Techniques for Bulk ZnO and Related Compounds

    Full text link
    ZnO bulk crystals can be grown by several methods. 1) From the gas phase, usually by chemical vapor transport. Such CVT crystals may have high chemical purity, as the growth is performed without contact to foreign material. The crystallographic quality is often very high (free growth). 2) From melt fluxes such as alkaline hydroxides or other oxides (MoO3, V2O5, P2O5, PbO) and salts (PbCl2, PbF2). Melt fluxes offer the possibility to grow bulk ZnO under mild conditions (<1000 deg. C, atmospheric pressure), but the crystals always contain traces of solvent. The limited purity is a severe drawback, especially for electronic applications. 3) From hydrothermal fluxes, usually alkaline (KOH, LiOH) aqueous solutions beyond the critical point. Due to the amphoteric character of ZnO, the supercritical bases can dissolve it up to several per cent of mass. The technical requirements for this growth technology are generally hard, but this did not hinder its development as the basic technique for the growth of {\alpha}-quartz, and meanwhile also of zinc oxide, during the last decades. 4) From pure melts, which is the preferred technology for numerous substances applied whenever possible, e.g. for the growth of silicon, gallium arsenide, sapphire, YAG. The benefits of melt growth are (i) the high growth rate and (ii) the absence of solvent related impurities. In the case of ZnO, however, it is difficult to find container materials that are compatible from the thermal (fusion point Tf = 1975 deg. C) and chemical (required oxygen partial pressure) point of view. Either cold crucible (skull melting) or Bridgman (with reactive atmosphere) techniques were shown to overcome the problems that are inherent to melt growth. Reactive atmospheres allow to grow not only bulk ZnO single crystals, but also other TCOs such as {\beta}-Ga2O3 and In2O3.Comment: 10 pages, 7 figures, talk on MRS Fall 2011 Bosto

    Purinergic receptor-mediated Ca2+ signaling in the olfactory bulb and the neurogenic area of the lateral ventricles

    Get PDF
    Like in other vertebrates, the anterior part of the telencephalon of amphibians mainly consists of the olfactory bulb (OB), but different from higher vertebrates, the lateral telencephalic ventricles of larval Xenopus laevis expand deep into the anterior telencephalon. The neurogenic periventricular zone (PVZ) of the lateral ventricles generates new OB neurons throughout the animal’s lifetime. We investigated the ultrastructural organization of the PVZ and found that within a time period of 24 h, 42.54 ± 6.65% of all PVZ cells were actively proliferating. Functional purinergic receptors are widespread in the central nervous system and their activation has been associated with many critical physiological processes, including the regulation of cell proliferation. In the present study we identified and characterized the purinergic system of the OB and the PVZ. ATP and 2MeSATP induced strong [Ca2+]i increases in cells of both regions, which could be attenuated by purinergic antagonists. However, a more thorough pharmacological investigation revealed clear differences between the two brain regions. Cells of the OB almost exclusively express ionotropic P2X purinergic receptor subtypes, whereas PVZ cells express both ionotropic P2X and metabotropic P1 and P2Y receptor subtypes. The P2X receptors expressed in the OB are evidently not involved in the immediate processing of olfactory information

    Experimental Hall electron mobility of bulk single crystals of transparent semiconducting oxides

    Get PDF
    We provide a comparative study of basic electrical properties of bulk single crystals of transparent semiconducting oxides (TSOs) obtained directly from the melt (9 compounds) and from the gas phase (1 compound), including binary (β-Ga2O3, In2O3, ZnO, SnO2), ternary (ZnSnO3, BaSnO3, MgGa2O4, ZnGa2O4), and quaternary (Zn1−xMgxGa2O4, InGaZnO4) systems. Experimental outcome, covering over 200 samples measured at room temperature, revealed n-type conductivity of all TSOs with free electron concentrations (ne) between 5 × 1015 and 5 × 1020 cm−3 and Hall electron mobilities (μH) up to 240 cm2 V−1 s−1. The widest range of ne values was achieved for β-Ga2O3 and In2O3. The most electrically conducting bulk crystals are InGaZnO4 and ZnSnO3 with ne > 1020 cm−3 and μH > 100 cm2 V−1 s−1. The highest μH values > 200 cm2 V−1 s−1 were measured for SnO2, followed by BaSnO3 and In2O3 single crystals. In2O3, ZnO, ZnSnO3, and InGaZnO4 crystals were always conducting, while others could be turned into electrical insulators.Leibniz-Gemeinschaft http://dx.doi.org/10.13039/501100001664Leibniz-Institut für Kristallzüchtung (IKZ) im Forschungsverbund Berlin e.V. (3477)Peer Reviewe

    Leucine-Rich Repeat Kinase 2 Modulates Retinoic Acid-Induced Neuronal Differentiation of Murine Embryonic Stem Cells

    Get PDF
    Background: Dominant mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most prevalent cause of Parkinson’s disease, however, little is known about the biological function of LRRK2 protein. LRRK2 is expressed in neural precursor cells suggesting a role in neurodevelopment. Methodology/Principal Findings: In the present study, differential gene expression profiling revealed a faster silencing of pluripotency-associated genes, like Nanog, Oct4, and Lin28, during retinoic acid-induced neuronal differentiation of LRRK2deficient mouse embryonic stem cells compared to wildtype cultures. By contrast, expression of neurotransmitter receptors and neurotransmitter release was increased in LRRK2+/2 cultures indicating that LRRK2 promotes neuronal differentiation. Consistently, the number of neural progenitor cells was higher in the hippocampal dentate gyrus of adult LRRK2-deficient mice. Alterations in phosphorylation of the putative LRRK2 substrates, translation initiation factor 4E binding protein 1 and moesin, do not appear to be involved in altered differentiation, rather there is indirect evidence that a regulatory signaling network comprising retinoic acid receptors, let-7 miRNA and downstream target genes/mRNAs may be affected in LRRK2deficient stem cells in culture. Conclusion/Significance: Parkinson’s disease-linked LRRK2 mutations that associated with enhanced kinase activity may affect retinoic acid receptor signaling during neurodevelopment and/or neuronal maintenance as has been shown in othe

    Overview of the MOSAiC expedition - Atmosphere

    Get PDF
    With the Arctic rapidly changing, the needs to observe, understand, and model the changes are essential. To support these needs, an annual cycle of observations of atmospheric properties, processes, and interactions were made while drifting with the sea ice across the central Arctic during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition from October 2019 to September 2020. An international team designed and implemented the comprehensive program to document and characterize all aspects of the Arctic atmospheric system in unprecedented detail, using a variety of approaches, and across multiple scales. These measurements were coordinated with other observational teams to explore cross-cutting and coupled interactions with the Arctic Ocean, sea ice, and ecosystem through a variety of physical and biogeochemical processes. This overview outlines the breadth and complexity of the atmospheric research program, which was organized into 4 subgroups: atmospheric state, clouds and precipitation, gases and aerosols, and energy budgets. Atmospheric variability over the annual cycle revealed important influences from a persistent large-scale winter circulation pattern, leading to some storms with pressure and winds that were outside the interquartile range of past conditions suggested by long-term reanalysis. Similarly, the MOSAiC location was warmer and wetter in summer than the reanalysis climatology, in part due to its close proximity to the sea ice edge. The comprehensiveness of the observational program for characterizing and analyzing atmospheric phenomena is demonstrated via a winter case study examining air mass transitions and a summer case study examining vertical atmospheric evolution. Overall, the MOSAiC atmospheric program successfully met its objectives and was the most comprehensive atmospheric measurement program to date conducted over the Arctic sea ice. The obtained data will support a broad range of coupled-system scientific research and provide an important foundation for advancing multiscale modeling capabilities in the Arctic

    Wachstumsphänomene und Stickstoffdotierung bei der Sublimationszüchtung von 6H-Siliciumcarbid

    No full text
    Die Keimoberfläche ist durch das Vorhandensein einer Störschicht charakterisiert, die durch die mechanische Kristallbearbeitung hervorgerufen wird. Diese Schicht kann die Ursache für zusätzliche Defekte sein. Die Untersuchungen der Oberflächenmorphologie zeigen, daß ein Überschuß an Silicium im Quellmaterial notwendig ist, um ein defektfreies Wachstum in den ersten Stadien zu ermöglichen. Sowohl ein Oxidationsschritt vor dem Wachstum als auch die Anwendung von fehlorientierten Keimen führten nicht zum gewünschten Stufenfluß. Im Konzentrationsbereich von 1x10^18 <= c_N (cm^-3) <= 3x10^19 wurden 6H-SiC-Einkristalle gezüchtet, sowohl auf (0001)- als auch (000-1)-Keimen. Der Einbau von Stickstoff bewirkt das Absinken der Wachstumsgeschwindigkeit, was mit dem ''site-competition''-Modell erklärt werden kann. Die Sättigung der Stickstoffkonzentration im Kristall in Abhängigkeit vom N_2/Ar-Verhältnis konnte durch eine Langmuir-Isotherme beschrieben werden. Die Polarität der Keimoberfläche beeinflußt den Stickstoffeinbau. Die Stickstoffkonzentration im gewachsenen Kristall ist auf der C-terminierten Fläche ca. doppelt so hoch wie auf der Si-terminierten. Es wurde gezeigt, daß die Oberflächenmorphologie zusätzlich zur Keimpolarität den Stickstoffeinbau beeinflußt.Normally, seed surfaces exhibit a surface damage layer caused by the wafer preparation. From this layer additional defects may originate. Investigating the crystal surfaces it could be shown, that only the use of excess silicon in the source material lead to a defect-free growth. Under the present thermodynamic conditions neither a subsequent oxidation of the polished seed nor employing off-oriented substrates prevented the defect formation. In the concentration range of 1x10^18 <= c_N (cm^-3) <=3x10^19 nitrogen doped 6H-SiC single crystals were grown on (0001)- or (000-1)-seeds respectively. In case of nitrogen doping a decrease of the growth rate due to site-competition was observed. The saturation of the nitrogen concentration in the crystal in dependence of the N_2/Ar ratio could be well described by Langmuir's adsorption theory. An influence of the growth face polarity on the nitrogen incorporation was found. The concentration in crystals grown on the C-terminated face is about twice that grown on the Si-terminated face. On the basis of the observed difference in the surface morphology it is assumed, that the growth mechanism influences the nitrogen incorporation additionally to the polarity
    • …
    corecore