2,917 research outputs found

    The 23–26 September 2012 U.K. Floods: Using PV Surgery to Quantify Sensitivity to Upper-Level Forcing

    Get PDF
    Major river flooding affected the United Kingdom in late September 2012 as a slow-moving extratropical cyclone brought over 150 mm of rain to parts of northern England and north Wales. The cyclone deepened over the United Kingdom on 24–26 September as a potential vorticity (PV) anomaly approached from the northwest, elongated into a PV streamer, and wrapped around the cyclone. The strength and position of the PV anomaly is modified in the initial conditions of Weather Research and Forecasting Model simulations, using PV surgery, to examine whether different upper-level forcing, or different phasing between the PV anomaly and cyclone, could have produced an even more extreme event. These simulations reveal that quasigeostrophic (QG) forcing for ascent ahead of the anomaly contributed to the persistence of the rainfall over the United Kingdom. Moreover, weakening the anomaly resulted in lower rainfall accumulations across the United Kingdom, suggesting that the impact of the event might be proportional to the strength of the upper-level QG forcing. However, when the anomaly was strengthened, it rotated cyclonically around a large-scale trough over Iceland rather than moving eastward as in the verifying analysis, with strongly reduced accumulated rainfall across the United Kingdom. A similar evolution developed when the anomaly was moved farther away from the cyclone. Conversely, moving the anomaly nearer to the cyclone produced a similar solution to the verifying analysis, with slightly increased rainfall totals. These counterintuitive results suggest that the verifying analysis represented almost the highest-impact scenario possible for this flooding event when accounting for sensitivity to the initial position and strength of the PV anomaly

    Stable kilohertz rate molecular beam laser ablation sources

    Get PDF
    A stable kilohertz (kHz) rate laser ablation/desorption supersonic molecular beam source for use in kHz rate laser experiments was discussed. The source was based based upon strong nonresonant interaction of a dithering laser focus with a rotating and translating solid rod. The kHz laser ablation of a high temperature refractory metal (niobium) for use in studied of metal clusters was also demonstrated. The kHz laser desorption and jet cooling of an involatile biomolecule (the DNA based guanine) for use in spectroscopic and dynamical studies was described.open151

    Deletion of the GABAA α2-subunit does not alter self dministration of cocaine or reinstatement of cocaine seeking

    Get PDF
    Rationale GABAA receptors containing α2-subunits are highly represented in brain areas that are involved in motivation and reward, and have been associated with addiction to several drugs, including cocaine. We have shown previously that a deletion of the α2-subunit results in an absence of sensitisation to cocaine. Objective We investigated the reinforcing properties of cocaine in GABAA α2-subunit knockout (KO) mice using an intravenous self-administration procedure. Methods α2-subunit wildtype (WT), heterozygous (HT) and KO mice were trained to lever press for a 30 % condensed milk solution. After implantation with a jugular catheter, mice were trained to lever press for cocaine (0.5 mg/kg/infusion) during ten daily sessions. Responding was extinguished and the mice tested for cue- and cocaine-primed reinstatement. Separate groups of mice were trained to respond for decreasing doses of cocaine (0.25, 0.125, 0.06 and 0.03 mg/kg). Results No differences were found in acquisition of lever pressing for milk. All genotypes acquired self-administration of cocaine and did not differ in rates of self-administration, dose dependency or reinstatement. However, whilst WT and HT mice showed a dose-dependent increase in lever pressing during the cue presentation, KO mice did not. Conclusions Despite a reported absence of sensitisation, motivation to obtain cocaine remains unchanged in KO and HT mice. Reinstatement of cocaine seeking by cocaine and cocaine-paired cues is also unaffected. We postulate that whilst not directly involved in reward perception, the α2-subunit may be involved in modulating the “energising” aspect of cocaine’s effects on reward-seeking

    Ambulatory teaching: Do approaches to learning predict the site and preceptor characteristics valued by clerks and residents in the ambulatory setting?

    Get PDF
    BACKGROUND: In a study to determine the site and preceptor characteristics most valued by clerks and residents in the ambulatory setting we wished to confirm whether these would support effective learning. The deep approach to learning is thought to be more effective for learning than surface approaches. In this study we determined how the approaches to learning of clerks and residents predicted the valued site and preceptor characteristics in the ambulatory setting. METHODS: Postal survey of all medical residents and clerks in training in Ontario determining the site and preceptor characteristics most valued in the ambulatory setting. Participants also completed the Workplace Learning questionnaire that includes 3 approaches to learning scales and 3 workplace climate scales. Multiple regression analysis was used to predict the preferred site and preceptor characteristics as the dependent variables by the average scores of the approaches to learning and perception of workplace climate scales as the independent variables. RESULTS: There were 1642 respondents, yielding a 47.3% response rate. Factor analysis revealed 7 preceptor characteristics and 6 site characteristics valued in the ambulatory setting. The Deep approach to learning scale predicted all of the learners' preferred preceptor characteristics (β = 0.076 to β = 0.234, p < .001). Valuing preceptor Direction was more strongly associated with the Surface Rational approach (β = .252, p < .001) and with the Surface Disorganized approach to learning (β = .154, p < 001) than with the Deep approach. The Deep approach to learning scale predicted valued site characteristics of Office Management, Patient Logistics, Objectives and Preceptor Interaction (p < .001). The Surface Rational approach to learning predicted valuing Learning Resources and Clinic Set-up (β = .09, p = .001; β = .197, p < .001). The Surface Disorganized approach to learning weakly negatively predicted Patient Logistics (β = -.082, p = .003) and positively the Learning Resources (β = .088, p = .003). Climate factors were not strongly predictive for any studied characteristics. Role Modeling and Patient Logistics were predicted by Supportive Receptive climate (β = .135, p < .001, β = .118, p < .001). CONCLUSION: Most site and preceptor characteristics valued by clerks and residents were predicted by their Deep approach to learning scores. Some characteristics reflecting the need for good organization and clear direction are predicted by learners' scores on less effective approaches to learning

    Reinforcement learning or active inference?

    Get PDF
    This paper questions the need for reinforcement learning or control theory when optimising behaviour. We show that it is fairly simple to teach an agent complicated and adaptive behaviours using a free-energy formulation of perception. In this formulation, agents adjust their internal states and sampling of the environment to minimize their free-energy. Such agents learn causal structure in the environment and sample it in an adaptive and self-supervised fashion. This results in behavioural policies that reproduce those optimised by reinforcement learning and dynamic programming. Critically, we do not need to invoke the notion of reward, value or utility. We illustrate these points by solving a benchmark problem in dynamic programming; namely the mountain-car problem, using active perception or inference under the free-energy principle. The ensuing proof-of-concept may be important because the free-energy formulation furnishes a unified account of both action and perception and may speak to a reappraisal of the role of dopamine in the brain

    Genotoxic agents promote the nuclear accumulation of annexin A2: role of annexin A2 in mitigating DNA damage

    Get PDF
    Annexin A2 is an abundant cellular protein that is mainly localized in the cytoplasm and plasma membrane, however a small population has been found in the nucleus, suggesting a nuclear function for the protein. Annexin A2 possesses a nuclear export sequence (NES) and inhibition of the NES is sufficient to cause nuclear accumulation. Here we show that annexin A2 accumulates in the nucleus in response to genotoxic agents including gamma-radiation, UV radiation, etoposide and chromium VI and that this event is mediated by the nuclear export sequence of annexin A2. Nuclear accumulation of annexin A2 is blocked by the antioxidant agent N-acetyl cysteine (NAC) and stimulated by hydrogen peroxide (H2O2), suggesting that this is a reactive oxygen species dependent event. In response to genotoxic agents, cells depleted of annexin A2 show enhanced phospho-histone H2AX and p53 levels, increased numbers of p53-binding protein 1 nuclear foci and increased levels of nuclear 8-oxo-2'-deoxyguanine, suggesting that annexin A2 plays a role in protecting DNA from damage. This is the first report showing the nuclear translocation of annexin A2 in response to genotoxic agents and its role in mitigating DNA damage.Natural Sciences and Engineering Research Council of Canada (NSERC); European Union [PCOFUND-GA-2009-246542]; Foundation for Science and Technology of Portugal; Beatrice Hunter Cancer Research Institute; Terry Fox Foundationinfo:eu-repo/semantics/publishedVersio

    How the weather affects the pain of citizen scientists using a smartphone app

    Get PDF
    Patients with chronic pain commonly believe their pain is related to the weather. Scientific evidence to support their beliefs is inconclusive, in part due to difficulties in getting a large dataset of patients frequently recording their pain symptoms during a variety of weather conditions. Smartphones allow the opportunity to collect data to overcome these difficulties. Our study Cloudy with a Chance of Pain analysed daily data from 2658 patients collected over a 15-month period. The analysis demonstrated significant yet modest relationships between pain and relative humidity, pressure and wind speed, with correlations remaining even when accounting for mood and physical activity. This research highlights how citizen-science experiments can collect large datasets on real-world populations to address long-standing health questions. These results will act as a starting point for a future system for patients to better manage their health through pain forecasts

    Roadmap on multiscale materials modeling

    Get PDF
    Modeling and simulation is transforming modern materials science, becoming an important tool for the discovery of new materials and material phenomena, for gaining insight into the processes that govern materials behavior, and, increasingly, for quantitative predictions that can be used as part of a design tool in full partnership with experimental synthesis and characterization. Modeling and simulation is the essential bridge from good science to good engineering, spanning from fundamental understanding of materials behavior to deliberate design of new materials technologies leveraging new properties and processes. This Roadmap presents a broad overview of the extensive impact computational modeling has had in materials science in the past few decades, and offers focused perspectives on where the path forward lies as this rapidly expanding field evolves to meet the challenges of the next few decades. The Roadmap offers perspectives on advances within disciplines as diverse as phase field methods to model mesoscale behavior and molecular dynamics methods to deduce the fundamental atomic-scale dynamical processes governing materials response, to the challenges involved in the interdisciplinary research that tackles complex materials problems where the governing phenomena span different scales of materials behavior requiring multiscale approaches. The shift from understanding fundamental materials behavior to development of quantitative approaches to explain and predict experimental observations requires advances in the methods and practice in simulations for reproducibility and reliability, and interacting with a computational ecosystem that integrates new theory development, innovative applications, and an increasingly integrated software and computational infrastructure that takes advantage of the increasingly powerful computational methods and computing hardware
    corecore