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Abstract

Annexin A2 is an abundant cellular protein that is mainly localized in the cytoplasm and plasma membrane, however a small
population has been found in the nucleus, suggesting a nuclear function for the protein. Annexin A2 possesses a nuclear
export sequence (NES) and inhibition of the NES is sufficient to cause nuclear accumulation. Here we show that annexin A2
accumulates in the nucleus in response to genotoxic agents including gamma-radiation, UV radiation, etoposide and
chromium VI and that this event is mediated by the nuclear export sequence of annexin A2. Nuclear accumulation of
annexin A2 is blocked by the antioxidant agent N-acetyl cysteine (NAC) and stimulated by hydrogen peroxide (H2O2),
suggesting that this is a reactive oxygen species dependent event. In response to genotoxic agents, cells depleted of
annexin A2 show enhanced phospho-histone H2AX and p53 levels, increased numbers of p53-binding protein 1 nuclear foci
and increased levels of nuclear 8-oxo-29-deoxyguanine, suggesting that annexin A2 plays a role in protecting DNA from
damage. This is the first report showing the nuclear translocation of annexin A2 in response to genotoxic agents and its role
in mitigating DNA damage.
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Introduction

Annexins are a structurally related family of calcium and

phospholipid-binding proteins that are involved in the regulation

of a broad range of molecular and cellular processes [1,2].

Annexins bind to anionic phospholipids in a calcium (Ca2+)–

dependent manner. All annexins share a conserved domain of 4

repeat sequences of approximately 70 residues long composed of 5

a-helices containing several Ca2+ binding sites [3–5]. Annexin A2

is present in cells in two forms, as a monomer or a heterotetramer

(AIIt). The heterotetramer (AIIt) consists of two molecules of

annexin A2 linked together by a dimer of the protein S100A10

[3,6,7]. The N-terminal domain of annexin A2 contains the

binding site for S100A10 [8], a reactive cysteine residue [9,10],

phosphorylation sites [11,12] and a nuclear export signal (NES)

[13], while the C-terminal domain of annexin A2 contains binding

sites for F-actin [14], phospholipid [4,5,15], fibrin [16] and

heparin [17].

Annexin A2 is primarily localized in the cytoplasm and plasma

membrane [18] with a smaller but significant population in the

nucleus [13,19,20]. Although the role of cytoplasmic and

membrane associated annexin A2 has been extensively studied,

the role of nuclear annexin A2 is unclear. One study reported that

15% of total annexin A2 was present in the nucleus of fibroblasts

and was released by RNase A [19], consistent with the

identification of annexin A2 as an RNA-binding protein [21].

Nuclear annexin A2 has also been suggested to play a role as part

of a primer recognition protein complex that enhances DNA

polymerase a activity in vitro [22].

Annexin A2 has a nuclear export sequence that prevents the

nuclear accumulation of the protein. Mutations of lysines 10 and

12 within the NES of annexin A2 inactivates this motif and results

in nuclear accumulation. Thus, it has been proposed that the

nuclear accumulation of annexin A2 occurs only after inactivation

of its NES. The mechanism by which annexin A2 enters the

nucleus is unclear as this protein does not possess a traditional

nuclear import sequence [13]. Annexin A2 phosphorylation has

also been suggested to play a role in annexin A2 nuclear

accumulation and overall localization; however these reports are

contradictory. For example, phosphorylation of both Ser 11 and

25 is reported to block the nuclear accumulation of annexin A2

[23], while phosphorylation of Ser 25, has been suggested to be

necessary for its nuclear accumulation [12]. In contrast,

phosphorylation of Tyr 23 of annexin A2 may activate its nuclear

translocation [13], activate its association with endosomes [24,25]

and stimulate its translocation to the cell surface [26]. Although

the importance of the NES in regulating the nuclear accumulation
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of annexin A2 has been established, the cellular processes that

trigger the nuclear accumulation of annexin A2 are still unknown.

Previous work from our laboratory has shown that annexin A2

is an important redox regulatory protein, particularly in cells

undergoing oxidative stress. Depletion of annexin A2 resulted in

increased protein oxidation in cells challenged with mild oxidative

stress, suggesting that annexin A2 protects cellular proteins from

oxidation [10]. In the present report, we examined the cellular

distribution of annexin A2 in cells subjected to genotoxic stress.

We observed a rapid nuclear accumulation of annexin A2 in

response to DNA damaging agents including gamma-radiation,

UV radiation, chromium VI and the chemotherapeutic agent,

etoposide. Interestingly, the nuclear accumulation of annexin A2

in response to genotoxic agents was blocked by the antioxidant N-

acetyl cysteine (NAC), suggesting that reactive oxygen species

(ROS) produced by the genotoxic agents induced the nuclear

accumulation of the protein. Consistent with this hypothesis, we

observed that annexin A2 rapidly accumulated in the nucleus of

cells subjected to oxidative stress caused by hydrogen peroxide

(H2O2) and that this nuclear accumulation was regulated by the

NES of annexin A2. Finally, we showed that annexin A2 depleted

cells are more sensitive to DNA damage, compared to control

cells. This is the first report describing the nuclear translocation of

annexin A2 in response to genotoxic agents and its role in

mitigating DNA damage.

Materials and Methods

Cell Culture, Transfections and Cell Lines
293T, MCF7 and A549 cells were obtained from ATCC and

maintained in Dulbecco’s modified Eagle’s medium (Invitrogen)

supplemented with 10% fetal bovine serum (FBS) and 100 U/ml

of penicillin/streptomycin, in a humidified incubator in an

atmosphere of 5% CO2 at 37uC. TIME endothelial cells were

a kind gift from Dr McMahon [27] and maintained in EGM2

medium (Lonza) supplemented with 2% FBS and 100 U/ml of

penicillin/streptomycin, in a humidified incubator in an atmo-

sphere of 5% CO2 at 37uC. 293T cells in 6 well plates were

transfected with 1 mg of the GFP plasmids described in File S1

using 3 ml of the lipofectamine 2000 transfection reagent

according to the manufacturers’ instructions. Annexin A2 depleted

cell lines were obtained by transfection of Phoenix packaging cells

with 4 mg of the pSUPER-retro plasmids described in File S1

using 12 ml of the lipofectamine 2000 transfection reagent

according to the manufacturers’ instructions. 48 hours after

transfection the target cells were infected with Phoenix super-

natants and selected with 2 mg/ml of puromicin.

Plasmids
Plasmids are detailed in File S1.

Antibodies
The following antibodies were used for western blot analysis:

annexin A2 antibody #610069 (BD Transduction laboratories),

S100A10 antibody #610071 (BD Transduction laboratories),

actin antibody (AC-40) #A3853 (SIGMA), p53 antibody (DO-1)

#sc-126 (SCBT), b-tubulin antibody (H-235) # sc-9104 (SCBT),

Lamin A/C antibody (N-18) #sc-6215 (SCBT), nucleolin

antibody (D-6) #sc-17826 (SCBT), JunD antibody #sc-44

(SCBT), CD146 antibody #sc-81614 (SCBT). Antibodies used

for immunocytochemistry were the following: annexin A2

antibody #ab41803-100 (AbCam), S100A10 antibody #610071

(BD Transduction laboratories), hnRNP A2/B1 antibody #sc-

53531 (SCBT), anti-rabbit 488 Alexa Fluor #A11008 (Molecular

Probes) and anti-mouse 546 Alexa Fluor #A11003 (Molecular

Probes).

Immunoprecipitation Assays
Cells were washed with PBS. For annexin A2 and S100A10 co-

immunoprecipitations, cells were lysed with NP-40 lysis buffer

(20 mM Tris pH 7.4, 1% NP-40, 150 mM NaCl, 2 mM EGTA,

protease inhibitors, 1 mM NaVO4, 10 mM NaF) for 10 minutes

on ice. Cell lysates were pre-cleared for 1 h with protein G-

Sepharose, incubated with specific antibodies for 1 h and then

with 50% slurry of protein G-Sepharose for 1 h. Beads were

washed five times with 500 ml of lysis buffer, resuspended with

25 ml 2X SDS-PAGE loading buffer, boiled for 5 minutes,

subjected to SDS-PAGE and analysed by western blot. The

following antibodies were used for immunoprecipitation studies:

annexin A2: D1/274.5 mouse monoclonal (made in house),

S100A10: #610071 (BD Transduction laboratories), JunD: #sc-

44 (SCBT) and Trx: sc-20146 (SCBT).

Western Blot Analysis
For western blot analysis 20 mg of cell lysates from total cell

extracts or equal ratios of each fraction (corresponding to the same

percentage of protein from each fraction) for cellular fractionation

experiments, were subjected to SDS-PAGE, transferred onto

a nitrocellulose membrane, incubated with appropriate antibodies

and visualized using a Licor Odyssey scanner (Li-cor Biosciences).

Sub-cellular Fractionation
Typically cells were mock treated, or treated with 1.5 J/m2 of

UV-A (365 nm) using a UV stratalinker (Stratagene), 10 Gy of

Gamma-irradiation using a Gammacell 3000 Elan irradiator

(MDS Nordion), 8.5 mM etoposide or 20 mM Cr(VI). Cells were

washed with PBS and scraped with buffer A (50 mM Hepes

pH 7.4, 0.1% Triton-X100, 10 mM NaCl, 20% glycerol, 1 mM

EDTA, 2 mM EGTA, 2 mM MgCl2, 1 mM DTT,

1 mM NaVO4, 10 mM NaF and protease inhibitors). Lysates

were incubated for 20 minutes at 4uC and centrifuged at 500 g for

3 minutes. Supernatants containing the non-nuclear fractions were

stored. The pellets were resuspended with buffer B (50 mM Hepes

pH 7.4, 0.5% Triton-X100, 400 mM NaCl, 1 mM EDTA, 2 mM

EGTA, 1 mM MgCl2, 1 mM DTT, 1 mM NaVO4, 10 mM NaF

and protease inhibitors), incubated for 20 minutes at 4uC and

centrifuged at 12000 g for 15 minutes. The supernatants contain-

ing the nuclear fractions were recovered. Identical ratios,

representing the same percentage of each subcellular fraction

(nuclear and non nuclear fractions) were subjected to SDS-PAGE

followed by western blotting, in order to represent the cellular ratio

of distribution of annexin A2 in each compartment. Typically,

15 mg of non nuclear fraction and 2–2.5 mg of nuclear fraction

were loaded. The same amount of protein was loaded within each

fraction. The nuclear versus non nuclear ratio varied slightly for

different cell lines, but it was usually approximately 1:6–7 for all

cell lines used.

Nuclear/Cytoplasmic/Membrane/Cytoskeleton
Fractionation
For multi-compartmental fractionation of cells we used the

CNMS compartment protein extraction kit (Biochain Institute)

according to the manufacturer’s instructions. Identical ratios,

representing the same percentage of each subcellular fraction were

subjected to SDS-PAGE followed by western blotting, in order to

represent the cellular ratio of distribution of annexin A2 in the

different cellular compartments.

Annexin A2 Mitigates DNA Damage
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Immunocytochemistry
Cells were fixed with 2% formaldehyde for 30 minutes,

permeabilized with 0.1% Triton X-100 for 15 minutes and

blocked with IgG for 1 hour. Primary antibodies were incubated

for 1 hour individually, followed by incubation with secondary

antibodies for 1 hour. Cells were visualized by confocal

microscopy using a Zeiss LSM 510 META - Laser Scanning

Confocal Microscope (Carl Zeiss Inc.).

Fluorescence Microscopy
293T cells transfected with different GFP expression plasmids

for 48 hours were visualized under a fluorescence microscope

using a GFP filter and pictures were taken (non treated cells), after

what these cells were treated with H2O2 for 30 minutes and

pictures were taken (H2O2 treated cells). Fluorescent cells were

visualized using a Research Macro Zoom System MVX10

fluorescence microscope (Olympus).

53BP1 Foci Staining and Scoring
TIME annexin A2 shRNA2 and scramble (control) cells were

plated on microscope cover slips in EGM2-10% FCS and

incubated at 37uC for 24 h. Cells were then mock treated or

treated with either IR or H2O2 at the indicated dosages for 6

hours. Cover slips were washed once with PBS and then fixed and

permeabilized for 30 minutes using 220uC cold methanol. Cover

slips were washed three times with PBS. Cells were incubated in

a humidified chamber at 37uC for 30 minutes with goat serum

(Gibco, USA) diluted 1:30.The serum was removed and the slides

were incubated with anti-53BP1 antibody (SCBT, USA) at 1:500

for 1 hour. After washing three times with PBS for 10 minutes at

room temperature, cover slips were incubated with the appropri-

ate Cy2-conjugated secondary antibody (Molecular Probes, USA)

in a humidified chamber at 37uC for 30 minutes. After washing as

described above, cover slips were mounted on glass slide using

DAPI Vector mounting solution (Vector Laboratories, UK) and

analyzed. 53BP1 foci were visualized at 1006magnification using

a Zeiss LSM 510 META - Laser Scanning confocal microscope.

For each condition the number of 53BP1 foci was scored within

100 nuclei from triplicate cover slips. For each 53BP1 foci scored,

the diameter was measured using the LSM imaging software Zen

2009 light edition. Once scored and measured, the data was

plotted using Graphpad Prism. Statistical significance was assessed

by two-way ANOVA or the two-tailed Students t-test. Statistical

significance was defined as P,0.05. Results are expressed as the

mean 6 StDev.

OxyDNA Assay
Oxidative DNA damage was accessed with the Argutus Medical

OxyDNA Test Kit (Argutus Medical) according to the manufac-

turers’ instructions. Briefly, cells were either not treated or treated

with 10 Gy IR for 6 hours. Cells were washed twice with PBS and

fixed with 2% formaldehyde/PBS for 15 minutes at 4uC. Cells
were washed with PBS and permeabilized with 70% ethanol/PBS

overnight at 220uC. Cells were then washed with TBS-T,

resuspended in 100 ml of 8-oxoguanine binding protein-FITC

conjugate dilution (1:10) in TBS-T and incubated for 2 hours at

room temperature. Cells were washed with TBS-T and analysed

by FACS. Statistical significance was assessed by the two-tailed

Students t-test, N= 6. Statistical significance was defined as

*P,0.05, **P,0.002, *** P,0001. Results are expressed as the

mean 6 StDev.

Results

Annexin A2 Accumulates in the Nucleus in Response to
Genotoxic Agents in a ROS Dependent Manner
Although annexin A2 is present in the nucleus; its role in this

cellular compartment is unclear. Previous work from our

laboratory has shown that annexin A2 is a redox regulatory

protein that protects cellular proteins by interacting with ROS

such as H2O2 [10]. With this work we further investigated the

cellular localization of annexin A2 in response to genotoxic agents

that produce ROS. In order to investigate this, we treated

telomerase immortalized microvascular endothelial (TIME) cells

with genotoxic agents such as ultra-violet (UV) radiation, gamma-

radiation (IR), chromium VI (Cr6+) [28] and the chemotherapeutic

agent, etoposide and observed that annexin A2 rapidly accumu-

lated in the nucleus (Figure 1A). Significant nuclear accumulation

of annexin A2 occurred by 15 minutes after treatment with 10 Gy

of IR and peaked by 30 minutes to 2 hours after treatment

(Figure 1C). In contrast, nuclear annexin A2 levels peaked by 3

hours after treatment with 1.5 J/m2 of ultra-violet radiation

(Figure 1E) and about 2 hours after treatment with 20 mM
chromium VI (Figure 1F). The amount of nuclear annexin A2 was

also dependent on the dose of the genotoxic agent (Figure 1B, D).

Although the results of our subcellular fractionation studies

suggested that annexin A2 accumulated in the nucleus in response

to genotoxic agents, we could not rule out the possibility that

annexin A2 did not enter the nucleus, but was associated with the

cytoplasmic surface of the nuclear membrane. However, we

observed that the nuclear accumulation of annexin A2 in response

to genotoxic agents was blocked by the nuclear influx inhibitor,

wheat germ agglutinin (WGA) (Figure 1G) [29,30]. Furthermore,

immunofluorescence microscopic analysis demonstrated the nu-

clear co-localization of annexin A2 with the nuclear marker,

hnRNP A2/B1 in response to IR (Figure 1H and S1A, B). This

result suggested that the nuclear accumulation of annexin A2

observed in our subcellular fractionation studies was due to the

entry of annexin A2 into the nucleus. The nuclear accumulation of

annexin A2 induced by genotoxic agents was also observed in

a number of different cell lines including HUVEC, A549, MCF7

and HCT 116 cells (Figure S2A, B, C, D).

We also analyzed the subcellular distribution of annexin A2

using a multi-compartmental cell fractionation system. We

observed that the nuclear accumulation of annexin A2 in response

to genotoxic agents was concomitant with a loss in cytoplasmic

annexin A2, while the annexin A2 levels in the membrane and

cytoskeleton fractions did not change significantly (Figure 2A).

Densitometric analysis suggested that in non treated cells about

10% of total cellular annexin A2 was nuclear, consistent with

previously published data [19]. At 2 hours after treatment with

5 Gy of IR we observed approximately a 3 fold increase in the

amount of nuclear annexin A2 (30% of total cellular protein)

(Figure 2B).

The induction of nuclear accumulation of annexin A2 by

a diverse group of genotoxic agents presented the possibility that

these agents acted by a common mechanism. Since IR, UV,

etoposide and Cr6+ are known to induce ROS; we investigated the

possibility that the nuclear accumulation of annexin A2 was

stimulated by oxidative stress. Accordingly, cells were incubated

with H2O2 and the nuclear accumulation of annexin A2 was

analyzed by cell fractionation followed by western blotting. We

observed that in response to 300 mM H2O2, annexin A2 rapidly

accumulated in the nucleus by 15 minutes after treatment

(Figure 3A). In order to further determine if the nuclear

accumulation of annexin A2 induced by genotoxic agents was

Annexin A2 Mitigates DNA Damage
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Figure 1. Annexin A2 translocates into the nucleus in response to genotoxic agents. TIME cells were not treated (NT) or treated with: (A)
1.5 J/m2 UV-A (365 nm) (UV), 10 Gy Gamma-radiation (IR), 8.5 mM etoposide (etp) or 20 mM chromium VI (Cr6+) for 2 hours; (B) with the indicated
doses of Gamma-radiation (IR) for 2 hours; (C) with 10 Gy of IR for the times indicated; (D) with the indicated doses of UV-A radiation for 2 hours; (E)
with 1.5 J/m2 UV-A (365 nm) for the times indicated; (F) with 20 mM chromium VI (Cr6+) for the times indicated; (G) with 10 Gy of IR in the absence or
presence of Wheat Germ Aglutinin (WGA) for the times indicated. (A–G) Nuclear and Non Nuclear fractions were prepared and identical ratios,
representing the same percentage of each subcellular fraction were subjected to SDS-PAGE followed by western blotting with the antibodies
indicated. Protein markers for the sub-cellular fractions include: nucleolin (nucleus); lamin A/C (nuclear membrane); tubulin (cytoplasm); CD146
(plasma membrane). (H) TIME cells were either not treated (NT) or treated with 10 Gy IR for 1 hour. Cells were subjected to immunocytochemistry
analysis with the antibodies indicated and visualized by confocal microscopy. Scale bar is 20 mM.
doi:10.1371/journal.pone.0050591.g001
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due to oxidative stress, we incubated TIME cells with the

antioxidant agent N-acetyl cysteine (NAC) and then treated these

cells with either H2O2 or IR. We observed that NAC blocked

annexin A2 nuclear accumulation (Figure 3B, C), confirming that

the nuclear accumulation of annexin A2 induced by genotoxic

agents was due to oxidative stress. Next, we incubated TIME cells

with different chromium isoforms that produce none (Cr4+), to

intermediate levels (Cr5+) or very high levels (Cr6+) of oxidative

stress and investigated the levels of nuclear annexin A2. We

observed that hexavalent chromium (Cr6+) was the most potent

inducer of nuclear annexin A2 accumulation (Figure 3D). These

results support that annexin A2 accumulates in the nucleus in

response to oxidative stress. We also examined the distribution of

annexin A2 in response to oxidative stress by immunofluorescence

microscopy. As shown in Figure 3E, oxidative stress resulting from

the incubation of TIME cells with H2O2 caused the nuclear

accumulation of annexin A2. Similar results were observed with

MCF7 and A549 cells (Figure S1A, B).

Nuclear Annexin A2 is not Associated with S100A10
Annexin A2 exists in the cells mainly in two forms, as

a monomer or in a heterotetrameric complex with its binding

partner S100A10. We next investigated if S100A10 was involved

in the nuclear accumulation of annexin A2 induced by genotoxic

agents. TIME, A549 and MCF7 cells were either not treated or

treated with gamma-radiation (IR) or H2O2. The nuclear and

non-nuclear fractions were incubated with antibodies against

annexin A2 or S100A10 and the immunoprecipitates were

subjected to SDS-PAGE followed by western blot analysis

(Figure 4). These results showed that S100A10 protein does not

accumulate in the nucleus in response to either gamma-radiation

or H2O2 and that the nuclear annexin A2 was not associated with

S100A10 (Figure 4). As a control we demonstrated that non-

nuclear annexin A2 readily co-immunoprecipitated with S100A10

(Figure 4). Immunofluorescence analysis further confirmed that

S100A10 was not present in the nucleus in response to genotoxic

agents (Figure 4D and S1). These results show that the annexin A2

that accumulates in the nucleus in response to genotoxic agents is

not complexed with S100A10.

The NES of Annexin A2 Regulates its Nuclear
Accumulation in Response to Genotoxic Agents
Annexin A2 possesses a well described nuclear export sequence

(NES) in the N-terminal region of the protein (3V-X-X-X-L-X-X-

L-X-L12) [13]. Mutational analysis studies have shown that

inactivation of the NES of annexin A2 results in the accumulation

of the protein in the nucleus and that the CRM1 nuclear export

inhibitor, leptomycin B (LmB) induces annexin A2 nuclear

accumulation [13]. In order to investigate if the NES of annexin

A2 was involved in the nuclear accumulation of annexin A2

induced by genotoxic agents, we incubated TIME cells with LmB

and then treated these cells with IR. These data showed that

treatment of cells with LmB or IR induced the nuclear

accumulation of annexin A2 to similar levels and that treatment

of cells with both IR and LmB did not further increase annexin A2

nuclear accumulation as compared to treatment with LmB or IR

alone (Figure 5A). These results suggest that LmB and IR might

induce the nuclear accumulation of annexin A2 by a common

mechanism, namely through the inhibition of CRM1, since

treatment of cells with both agents does not have an additive effect

on annexin A2 nuclear accumulation. In order to determine if the

NES of annexin A2 was sufficient to regulate the nuclear

accumulation in response to genotoxic agents, we tagged the N-

terminus of green fluorescent protein (GFP) either with the N-

terminal 15 amino acids (1STVHEILCKLSLEGD15) of annexin

A2 which contains the NES or with 15 random amino acids, as

a non-specific control (NC) peptide. GFP was used in these

experiments because it can be readily visualized by fluorescence

microscopy and also because it is a relatively low molecular weight

protein (27 kDa), like annexin A2 (36 kDa). We observed that

GFP tagged with the control peptide (NC-GFP) was localized in

the cytoplasm and in the nucleus of 293T cells, while GFP tagged

with the NES of annexin A2 was excluded from the nucleus of

these cells (Figure 5B (top panels), S3A and S3B). Interestingly, we

observed that after treatment of the 293T cells with H2O2 the

Figure 2. Annexin A2 accumulates in the nucleus and decreases in the cytoplasm in response to genotoxic agents. (A) TIME cells were
not treated (NT) or treated with 5 Gy IR for the times indicated. Cells were fractionated into nuclear, cytoplasmic, membrane and cytoskeletal (CSK)
fractions. Identical ratios of the various protein fractions, representing the same percentage of each subcellular fraction, were subjected to SDS-PAGE
followed by western blotting with the antibodies indicated. Protein markers for the sub-cellular fractions include: nucleolin (nucleus/cytoskeleton);
lamin A/C (nuclear membrane and cytoskeleton); tubulin (cytoplasm); CD146 (plasma membrane). (B) Quantification of the change in annexin A2
protein expression in the nucleus and cytoplasm before and after IR treatment using the Licor Odyssey software. These results represent the average
of 4 independent experiments (N = 4). Statistical significance was defined as *P,0.05, **P,0.002, *** P,0.0001. Results are expressed as the mean6
StDev.
doi:10.1371/journal.pone.0050591.g002
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NES-GFP fusion protein was no longer excluded from the nucleus,

its distribution was both nuclear and cytoplasmic, suggesting that

oxidative stress either inactivates the NES or the nuclear transport

mechanism responsible for excluding the NES-GFP protein from

the nucleus (Figure 5B (middle right panel) and S3B). Next, we

tagged GFP with a mutant NES where lysines 10 and 12 were

replaced by alanine residues (NES-L-10/12-A-GFP) as these

mutations inactivate the NES of annexin A2 [13]. We observed

that the NES-L-10/12-A-GFP protein was localized in the nucleus

and cytoplasm of 293T cells (Figure S4A), this result indicates that

the NES of annexin A2 excludes GFP from the nucleus. As an

extra control, we treated cells expressing NES-GFP with

leptomycin B (LmB), which inhibits the nuclear export protein

CRM1 and consequently leads to the nuclear accumulation of

ANXA2. This result showed a nuclear and cytoplasmic distribu-

tion of the NES-GFP protein upon LmB treatment, as expected

(Figure S4B).

Recent work from our laboratory has shown that annexin A2

has a redox sensitive cysteine, Cys-8, that is a target for oxidation

by H2O2 [10]. Since Cys-8 is located in the NES it was reasonable

Figure 3. Annexin A2 nuclear accumulation is dependent of ROS. TIME cells were treated with (A) 300 mM H2O2 for the times indicated; (B)
1 mM H2O2 in the absence or presence of 10 mM NAC for 2 hours; (C) 1 Gy or 10 Gy of IR in the absence or presence of 10 mM NAC for 2 hours; (D)
20 mM Cr4+, Cr5+ or Cr6+ as indicated, for 2 hours. (A-D) Nuclear and non-nuclear fractions were prepared. Identical ratios of the various protein
fractions were subjected to SDS-PAGE followed by western blotting with the antibodies indicated. (E) TIME cells were either not treated (NT) or
treated with 0.5 mM H2O2 for 30 minutes. Cells were subjected to immunocytochemistry analysis with the antibodies indicated and visualized by
confocal microscopy. Scale bar is 20 mM.
doi:10.1371/journal.pone.0050591.g003
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to suspect that this residue might act as a redox sensor for the NES

and inactivate the NES in response to oxidative stress. Therefore,

we mutated this residue to alanine and expressed the NES-C-8-A-

GFP construct in 293T cells. We reasoned that if the Cys-8 residue

was involved in the inactivation of the NES by oxidative stress then

its substitution with alanine would either block the ability of

oxidative stress to inactivate the NES or this substitution could by

itself inactivate the NES. We observed that Cys-8 mutation did not

affect the nuclear exclusion of GFP in non-treated 293T cells and

that NES-C-8-A-GFP accumulated in the nucleus in response to

H2O2 treatment (Figure 5B (lower panels) and S4C). These data

suggest that the Cys-8 of annexin A2 is not involved in the

regulation of the NES of annexin A2 in response to oxidative

stress.

Annexin A2 Protects Cellular DNA from Damage
The observation that annexin A2, a redox regulatory protein

[10], rapidly accumulates in the nucleus in response to genotoxic

agents by a mechanism involving the production of ROS

presented the possibility that annexin A2 might protect cellular

DNA from oxidative damage. In order to investigate this

hypothesis we established annexin A2 depleted and control cell

lines and treated these cells with H2O2 or IR (Figure 6). DNA

damage was measured using two DNA damage markers namely

Figure 4. Nuclear annexin A2 is not associated with S100A10. (A) TIME cells were either not treated (NT) or treated with 10 Gy IR for 2 hours;
(B) MCF7 cells were treated with 10 Gy IR for 2 hours; (C) A549 cells were either not treated (NT) or treated with 1 mM H2O2 or 10 Gy IR for 2 hours as
indicated. (A–C) Nuclear and non-nuclear fractions were prepared followed by immunoprecipitation with the antibodies indicated. Nuclear and non-
nuclear fractions (cell extracts) and immunoprecipitates were subjected to SDS-PAGE and analyzed by western blotting with the antibodies indicated.
(D) TIME cells were either not treated (NT) or treated with 0.5 mM H2O2 for 30 minutes or 10 Gy IR for 1 hour. Cells were subjected to
immunocytochemistry analysis with the antibodies indicated and visualized by confocal microscopy. Scale bar is 20 mM.
doi:10.1371/journal.pone.0050591.g004
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the phosphorylation of histone H2AX (P-H2AX) and the

accumulation of p53 protein. The rapid phosphorylation of

histone H2AX at serine 139 is a sensitive marker for DNA

double-strand breaks induced by ionizing radiation or other

genotoxic agents [31]. The tumor suppressor p53 protein

accumulates in the nucleus upon DNA damage where it functions

as a transcription factor regulating cell cycle arrest/apoptosis [32–

34]. We observed that annexin A2 depleted cells showed increased

H2AX phosphorylation and p53 accumulation upon IR treatment

compared to control cells (Figure 6A, B). H2O2 treatment also

increased H2AX phosphorylation but did not induce p53

accumulation during the time course analyzed (Figure 6C).

Annexin A2 depleted cells showed increased H2AX phosphory-

lation upon H2O2 treatment compared to control cells (Figure 6C).

However, annexin A2 depletion in both TIME and MCF7 cells

did not by itself lead to a striking increase in DNA damage, as

increased H2AX phosphorylation or accumulation of p53 in the

non treated annexin A2 depleted cells was not observed. These

results indicate that annexin A2 protects DNA from damage by

genotoxic agents.

The quantification of p53-binding protein 1 (53BP1) by

fluorescence microscopy following genotoxic damage is an

important method for the detection of DNA damage [35,36].

This protein is recruited to nuclear foci which typically correspond

to DNA strand breaks. We observed that both H2O2 and IR

exposure triggered the accumulation of multiple 53BP1 foci

(Figure 7A), consistent with the induction of DNA damage by

these agents. We observed significantly higher numbers of 53BP1

foci in annexin A2 depleted cells treated with both H2O2 and IR

compared to control cells (Figure 7B). However, even though IR

produced a larger number of 53BP1 foci as expected, the most

significant difference for the number of foci between annexin A2

depleted versus control cells was observed in cells treated with the

reactive oxygen species, H2O2, suggesting that annexin A2 might

play a role in protecting DNA from oxidative damage. Another

interesting observation was that the 53BP1 foci formed in the

ANXA2 depleted cells upon oxidative stress (H2O2 treatment)

were significantly smaller than the foci size observed for the

control cells (Figure 7C).

Our results suggested that annexin A2 might function in the

nucleus to protect DNA from oxidative damage. Since IR can

induce DNA damage/breaks in a ROS independent way, we

further investigated if annexin A2 specifically protected DNA from

IR induced oxidative damage. Genotoxic agents such as IR can

cause oxidative damage to DNA which results in the formation of

7,8-dihydro-8-oxo-29-deoxyguanine (8-oxo-G) base mutations in

the DNA [37]. In order to investigate this possibility we treated

annexin A2 depleted and control TIME cells with 10 Gy IR and

measured oxidative DNA damage, by the formation of 8-oxo-G

base mutations. We observed a slight increase in DNA damage in

the non treated annexin A2 depleted cells, compared to control

cells (Figure 7D, E). Interestingly, cells depleted of annexin A2

showed significantly elevated oxidative DNA damage after

treatment with 10 Gy IR, compared to control cells (Figure 7D,

E), further supporting a role for annexin A2 in protecting DNA

specifically from oxidative damage.

Discussion

In the current report we show that annexin A2 accumulates in

the nucleus upon exposure of cells to different genotoxic agents

and protects the cellular DNA from oxidative damage.

Our current studies show that the genotoxic agents: IR, UV-A,

etoposide, Cr6+ and H2O2 induce the accumulation of annexin A2

in the nucleus. We used different genotoxic agents that induce

DNA damage in different ways in order to show that ANXA2

accumulates in the nucleus in response to the generation of ROS

Figure 5. Annexin A2 nuclear accumulation is regulated by its NES. (A) TIME cells were treated with 10 Gy of IR in the absence or presence of
10 ng/ml Leptomycin B (LmB) for the times indicated. Nuclear and non-nuclear fractions were prepared. Identical ratios of the various protein
fractions were subjected to SDS-PAGE followed by western blotting with the antibodies indicated. (B) 293T cells were transfected with Non-specific
Control-GFP (NC-GFP), NES-GFP or NES-C-8-A-GFP constructs as indicated. 48 hours after transfection cells were either not treated (NT) or treated with
H2O2 and the various GFP proteins were visualized by fluorescence microscopy. Scale bar is 20 mM.
doi:10.1371/journal.pone.0050591.g005

Figure 6. Annexin A2 protects cellular DNA from damage. (A)
TIME ANXA2 shRNA1, TIME ANXA2 shRNA2 or TIME ANXA2 scramble
cells were treated with 10 Gy IR for the times indicated; (B-C) MCF7
ANXA2 shRNA1, MCF7 ANXA2 shRNA2 or MCF7 ANXA2 scramble cells
were treated with (B) 10 Gy IR for the times indicated or (C) 1 mM H2O2

for the times indicated. (A–C) 20 mg of each cell lysate was subjected to
SDS-PAGE followed by western blot analysis with the antibodies
indicated.
doi:10.1371/journal.pone.0050591.g006
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Figure 7. Annexin A2 depleted cells have higher number of 53BP1 foci and enhanced 8-oxy-G upon genotoxic stress compared to
control cells. TIME annexin A2 shRNA2 and scramble (control) cells were plated on microscope cover slips and incubated at 37uC for 24 h. Cells were
then treated with either 10 Gy IR or 500 mM H2O2 for 6 hours. Cells were permeabilized and incubated with anti-53BP1 antibody (SCBT, USA) for 1
hour. Subsequently, they were incubated with the appropriate Cy2-conjugated secondary antibody (Molecular Probes, USA) for 30 minutes. 53BP1
foci were visualized at 1006magnification using a Zeiss LSM 510 META - laser scanning confocal microscope. (A) Representative slides for 53BP1 foci
staining for each cell line and treatment, as indicated. Scale bar is 20 mM. (B) Average number of 53BP1 foci for each cell line and treatment, as
indicated. (C) 53BP1 foci diameter for each cell line and treatment, as indicated. (A–C) For each condition the number of 53BP1 foci was scored within
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induced by these genotoxic agents and not in response to DNA

damage/signaling, to further support this result we showed that

NAC treatment inhibits the nuclear accumulation of ANXA2 that

is induced by the genotoxic agents. In summary, the nuclear

accumulation of ANXA2 seems to occur in response to different

types of DNA damage and what is common to these genotoxic

damages is the production of ROS which regulates ANXA2

nuclear accumulation. This result led us to hypothesize that it is

the redox function of ANXA2 that most likely plays a role in DNA

protection, since the mechanism(s) of damage and repair for the

different genotoxic damages investigated are distinct. Since

ANXA2 interacts directly with H2O2 and plays a significant role

in the regulation of ROS levels during oxidative stress [10], we

speculate that a probable mechanism by which ANXA2 protects

DNA from damage is through the regulation of the ROS

produced by the genotoxic agents. We have previously shown

that ANXA2 knockdown cells are more sensitive to death induced

by several chemotherapeutic agents [10]. This result suggested

that the ANXA2 knockdown cells treated with the same dosage of

ROS inducing chemotherapeutic agents accumulate more ROS in

comparison to control cells, leading to enhanced death of the

ANXA2 knockdown cells.

Other annexins have been shown to act as redox proteins. In

contrast to the Cysteine-8 residue of ANXA2, a putative redox-

active cluster is exhibited by many plant annexins. The cluster is

formed by two adjacent cysteine residues and the sulphur of

a nearby methionine residue and is located in helices IIB and IIIE

[38]. Annexin A1 from Arabidopsis thaliana (AnnAt1) participates

in modulating the excessive levels of reactive oxygen species during

oxidative burst in plants [39]. AnnAt1 from A. thaliana, expressed

in Escherichia coli and Nicotiana benthamiana possesses peroxidase

activity [40]. Interestingly, hydrogen peroxide accumulation in

guard cells was reduced in plants over-expressing AnnAt1 and

increased in knockout plants [41]. Plant AnnAt1 as most annexins,

does not possess a nuclear localization sequence; however,

translocation of the protein to the nucleus has been observed

upon stress stimulation [39,42–44]. Similarly, treatment of cells

with H2O2 has been shown to cause the translocation of

mammalian annexin I from the cytoplasm to the nucleus [40].

Therefore ANXA2 is not the only member of the annexin family

to act as a redox protein and demonstrate redox-dependent

movement to the nucleus.

Typically, proteins that shuttle between the nucleus and

cytoplasm have a nuclear localization signal (NLS) sequence and

a NES (reviewed in [45–47]). Transport of a protein into the

nucleus is initiated with its binding to importin a via its NLS

sequence which then binds to importin b to form a ternary

complex. The complex is then transferred to the internal face of

the nuclear pore, recognized by the nuclear pore complex (NPC)

and transported further into the nucleoplasm. The NES of the

nuclear protein then binds to CRM1 (exportin1) and the resulting

complex is then exported from the nucleus. Although the

mechanism by which annexin A2 enters the nucleus is not

thought to involve a NLS, the transport of annexin A2 from the

nucleoplasm to the cytoplasm is regulated by its NES. NES

sequences are short sequence motifs which are necessary and

sufficient to mediate the nuclear export of large carrier proteins.

Important for their function is a characteristic spacing of

hydrophobic residues, mainly leucine or isoleucine. NES typically

consist of a sequence of hydrophobic amino acids which follow the

pattern L-X(1–4)-L-X(2)-L-(X)-L, where L is usually a hydrophobic

residue [46,48,49]. A nuclear export signal sequence

(3VHEILCKLSLE13) has been identified in annexin A2 by

Creutz’s group [13]. This group observed that the nuclear export

of annexin A2 was inhibited by leptomycin B (LmB). Since LmB

inactivates CRM1, it was suggested that annexin A2 was exported

from the nucleus by the CRM1 pathway. Thus this group

suggested that annexin A2 enters the nucleus by an unknown

mechanism but is prevented from accumulating in the nucleus by

the dominance of the NES. In the presence of genotoxic agents we

observed that annexin A2 accumulated in the nucleus suggesting

that genotoxic agents stimulate the nuclear influx of annexin A2,

inhibit its export from the nucleoplasm or influence both

processes. It was therefore interesting that the GFP fusion protein

consisting of the annexin A2 NES fused to the N-terminus of GFP,

accumulated in the nucleus in response to H2O2. This result

suggested that the nuclear accumulation of annexin A2 can be

regulated by its NES. Since the nuclear accumulation of annexin

A2 was blocked by the antioxidant, NAC and stimulated by H2O2,

we suspected that oxidation of Cys-8 within the NES might

inactivate the NES and prevent the export of the nuclear protein.

However, the GFP fusion protein, consisting of a Cys-8-Ala

mutation in the NES was excluded from the nucleus in non treated

cells and also resulted in GFP accumulation in the nucleus in

response to H2O2. This result suggests that the Cys-8 residue of

annexin A2 is not involved in the regulation of its NES. Since the

CRM1 dependent export of nuclear proteins can be inhibited by

oxidative stress [50], we hypothesized that oxidative stress

inactivates the exportin CRM1 resulting in the inhibition of the

export of annexin A2 from the nucleus and consequent nuclear

accumulation of the protein.

The N-terminal region of annexin A2 not only contains a NES

but also contains the binding site for S100A10. The key residues

for S100A10 binding are Val-3, Ile-6, Leu-7, and Leu-10 [51–53].

Considering that these residues are also part of the NES, it was

possible that genotoxic agents and/or oxidative stress might

promote the binding of S100A10 to annexin A2 which would be

predicted to block the NES and allow nuclear accumulation of the

annexin A2/S100A10 complex. However, we observed that

annexin A2 but not its binding partner S100A10 accumulated in

the nucleus in response to genotoxic agents. This result is in

accordance with another study that reported that monomeric

annexin A2 accumulated in the nucleus in response to LmB

treatment [13]. In the present study we show that annexin A2 that

accumulates in the nucleus in response to genotoxic agents is also

a monomer.

Genotoxic agents are known to cause DNA damage by

interacting with DNA and causing DNA strand breaks. The rapid

phosphorylation of histone H2AX at serine 139 is a sensitive

marker for DNA double-strand breaks induced by IR or other

genotoxic agents [31]. Interestingly, we observed that treatment of

cells with IR or H2O2 resulted in significantly higher levels of P-

100 nuclei from triplicate cover slips. For each 53BP1 foci scored, the diameter was measured using the LSM imaging software Zen 2009 light edition.
Statistical significance was assessed by two-way ANOVA or the two-tailed Students t-test. Statistical significance was defined as P,0.05. Results are
expressed as the mean 6 StDev. (D) TIME annexin A2 shRNA2 or control cells were either not treated or treated with 10 Gy IR for 6 hours. Cells were
fixed, permeabilized and labeled with 8-oxy-binding-FITC conjugated protein (Argutus Medical), followed by FACS analysis. As a negative control we
used TIME cells that were not incubated with 8-oxy-binding-FITC protein in order to establish the background fluorescence; (E) Percentage of 8-oxy-
binding-FITC positively labeled cells from (D). Statistical significance was assessed by the two-tailed Students t-test, N = 6. Statistical significance was
defined as *P,0.05, **P,0.002, *** P,0.0001. Results are expressed as the mean 6 StDev.
doi:10.1371/journal.pone.0050591.g007
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H2AX if the cells were depleted of annexin A2. Several proteins

involved in DNA repair and DNA damage signaling such as

phosphorylated histone 2A family member X (c-H2AX) and the

tumour suppressor p53 binding protein 1 (53BP1) have been

shown to produce discrete foci that co-localize to DNA breaks

[35,54]. Our data also showed that annexin A2 depleted cells

formed significantly more 53BP1 foci after H2O2 and IR exposure

compared to control cells. These results indicate that annexin A2

plays a role in protecting DNA from genotoxic damage. It was

interesting to observe that the foci formed in the annexin A2

depleted cells upon treatment with H2O2 were significantly smaller

compared to control cells. This result suggests that annexin A2

might be involved in the formation of DNA repair foci upon

oxidative stress. Taking into account annexin A2 already known

functions, we speculate that annexin A2 might function as

a scaffold protein and/or a redox regulatory protein, within the

DNA repair foci. These function(s) could explain why the foci

formed in the annexin A2 depleted cells upon H2O2 treatment are

significantly smaller compared to control cells.

Many genotoxic agents are known to cause DNA damage not

only by interacting directly with DNA and causing DNA strand

breaks, but also indirectly by a mechanism that involves the

production of ROS/oxidative stress [55]. The question therefore

was if the role of annexin A2 as a cellular redox regulatory protein

[10] was relevant to its ability to protect cells from DNA damage.

Our observation that annexin A2 depletion resulted in cells that

were more sensitive to DNA damage induced by H2O2 suggested

that annexin A2 might mitigate oxidative stress and by this

mechanism prevent DNA damage. Genotoxic agents such as IR

can cause oxidative damage to DNA which result in the formation

of 8-oxo-G base mutations in the DNA [37]. Interestingly, we

observed that in response to IR, cells depleted of annexin A2

showed more oxidative DNA damage than control cells, as

measured by the presence of 8-oxo-G. This result supports that

annexin A2 redox regulatory function is important for its ability to

protect cellular DNA from oxidative damage.

In summary, this is the first report that shows annexin A2

nuclear accumulation in response to genotoxic agents and its role

in mitigating DNA damage.

Supporting Information

Figure S1 Annexin A2 monomer accumulates in the
nucleus in response to oxidative and genotoxic stresses.
(A) MCF7 cells or (B) A549 cells were either not treated (NT) or

treated with 0.5 mM H2O2 for 30 minutes or 10 Gy IR for 1 hour

as indicated. Cells were fixed with 2% formaldehyde, permeabi-

lized with 0.1% Triton X-100, blocked with IgG and incubated

with antibodies against annexin A2, hnRNP A2/B1 or S100A10

as indicated. Cells were visualized by confocal microscopy. Scale

bar is 20 mM.

(EPS)

Figure S2 Annexin A2 accumulates in the nucleus in
response to genotoxic stress. (A) HUVEC, (B) A549, (C)

MCF7 or (D) HCT 116 cells were treated with 10 Gy of gamma

radiation (ionizing radiation- IR) for the times indicated. Nuclear

and non-nuclear fractions were prepared. Identical ratios of

nuclear and non-nuclear lysates were subjected to SDS-PAGE

followed by western blot analysis with the antibodies indicated.

Protein markers for the nuclear fraction include nucleolin and

lamin A/C and the protein marker for the cytoplasmic fraction is

tubulin. Cell culture of HCT 116 and HUVEC cells is described in

File S1.

(EPS)

Figure S3 The NES of annexin A2 is inactivated upon
oxidative stress. 293T cells were transfected with (A) Non-

specific Control-GFP (NC-GFP) or (B) NES-GFP constructs, as

indicated. 48 hours after transfection cells were either not treated

(NT) or treated with H2O2 as indicated and the various GFP

proteins were visualized by fluorescence microscopy. Scale bar is

20 mM. Plasmids are detailed in File S1.

(EPS)

Figure S4 Characterization of the NES of annexin A2.
293T cells were transfected with (A) NES-L-10/12-A-GFP, (B)

NES-GFP or (C) NES-C-8-A-GFP constructs as indicated. 48

hours after transfection cells were either not treated (NT); treated

with leptomycin B (LmB) or treated with H2O2 as indicated and

the various GFP proteins were visualized by fluorescence

microscopy. Scale bar is 20 mM. Plasmids are detailed in File S1.

(EPS)

File S1
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