1,030 research outputs found

    Palaeogene glendonites from Denmark

    Get PDF
    Pristinely preserved mineral pseudomorphs called glendonites, up to 1.6 m long, from the Palaeogene strata of Denmark allow detailed crystallographic characterisation and add to the understanding of the transformation of the precursor mineral, ikaite (CaCO3 center dot 6H(2)O), to calcite, which constitutes the glendonite. We describe Danish pseudomorphs after ikaite from two localities and formations: the Early Eocene Fur Formation and the Late Oligocene Brejning Formation. This detailed study highlights that key aspects such as morphology and mode of occurrence of these ancient glendonites are identical to those of their parent mineral ikaite, when it grows in marine sediments. Systematic distortion of the angles in glendonite and marine sedimentary ikaite relative to the ideal ikaite symmetry may arise due to the incorporation of organic matter into the crystal structure, and we demonstrate the similarity between modern and ancient ikaite formation zones in the marine sedimentary realm with respect to organic matter

    Context-dependent preferences in starlings: linking ecology, foraging and choice

    Get PDF
    Foraging animals typically encounter opportunities that they either pursue or skip, but occasionally meet several alternatives simultaneously. Behavioural ecologists predict preferences using absolute properties of each option, while decision theorists focus on relative evaluations at the time of choice. We use European starlings (Sturnus vulgaris) to integrate ecological reasoning with decision models, linking and testing hypotheses for value acquisition and choice mechanism. We hypothesise that options' values depend jointly on absolute attributes, learning context, and subject's state. In simultaneous choices, preference could result either from comparing subjective values using deliberation time, or from processing each alternative independently, without relative comparisons. The combination of the value acquisition hypothesis and independent processing at choice time has been called the Sequential Choice Model. We test this model with options equated in absolute properties to exclude the possibility of preference being built at the time of choice. Starlings learned to obtain food by responding to four stimuli in two contexts. In context [AB], they encountered options A5 or B10 in random alternation; in context [CD], they met C10 or D20. Delay to food is denoted, in seconds, by the suffixes. Observed latency to respond (Li) to each option alone (our measure of value) ranked thus: LA≈LC<LB<<LD, consistently with value being sensitive to both delay and learning context. We then introduced simultaneous presentations of A5 vs. C10 and B10 vs. C10, using latencies in no-choice tests to predict sign and strength of preference in pairings. Starlings preferred A5 over C10 and C10 over B10. There was no detectable evaluation time, and preference magnitude was predictable from latency differentials. This implies that value reflects learning rather than choice context, that preferences are not constructed by relative judgements at the time of choice, and that mechanisms adapted for sequential decisions are effective to predict choice behaviour.This work was supported by Biotechnology and Biological Sciences Research Council (BBSRC) Grant BB/G007144/1 to AK www.bbsrc.ac.uk; TM was supported by a Doctoral Grant from the Portuguese Foundation for Science and Technology (FCT) www.fct.pt/index.phtml.en. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript

    Alternative splicing and differential subcellular localization of the rat FGF antisense gene product

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>GFG/NUDT is a nudix hydrolase originally identified as the product of the fibroblast growth factor-2 antisense (FGF-AS) gene. While the FGF-AS RNA has been implicated as an antisense regulator of FGF-2 expression, the expression and function of the encoded GFG protein is largely unknown. Alternative splicing of the primary FGF-AS mRNA transcript predicts multiple GFG isoforms in many species including rat. In the present study we focused on elucidating the expression and subcellular distribution of alternatively spliced rat GFG isoforms.</p> <p>Results</p> <p>RT-PCR and immunohistochemistry revealed tissue-specific GFG mRNA isoform expression and subcellular distribution of GFG immunoreactivity in cytoplasm and nuclei of a wide range of normal rat tissues. FGF-2 and GFG immunoreactivity were co-localized in some, but not all, tissues examined. Computational analysis identified a mitochondrial targeting sequence (MTS) in the N-terminus of three previously described rGFG isoforms. Confocal laser scanning microscopy and subcellular fractionation analysis revealed that all rGFG isoforms bearing the MTS were specifically targeted to mitochondria whereas isoforms and deletion mutants lacking the MTS were localized in the cytoplasm and nucleus. Mutation and deletion analysis confirmed that the predicted MTS was necessary and sufficient for mitochondrial compartmentalization.</p> <p>Conclusion</p> <p>Previous findings strongly support a role for the FGF antisense RNA as a regulator of FGF2 expression. The present study demonstrates that the antisense RNA itself is translated, and that protein isoforms resulting form alternative RNA splicing are sorted to different subcellular compartments. FGF-2 and its antisense protein are co-expressed in many tissues and in some cases in the same cells. The strong conservation of sequence and genomic organization across animal species suggests important functional significance to the physical association of these transcript pairs.</p

    Neuroprotective Potential of Biphalin, Multireceptor Opioid Peptide, Against Excitotoxic Injury in Hippocampal Organotypic Culture

    Get PDF
    Biphalin is a dimeric opioid peptide that exhibits affinity for three types of opioid receptors (MOP, DOP and KOP). Biphalin is undergoing intensive preclinical study. It was recognized that activation of δ-opioid receptor elicits neuroprotection against brain hypoxia and ischemia. We compare the effect of biphalin and morphine and the inhibition of opioid receptors by naltrexone on survival of neurons in rat organotypic hippocampal cultures challenged with NMDA. Findings: (1) 0.025–0.1 μM biphalin reduces NMDA-induced neuronal damage; (2) biphalin neuroprotection is abolished by naltrexone; (3) reduced number of dead cells is shown even if biphalin is applied with delay after NMDA challenge

    Internal Transcribed Spacer 2 (nu ITS2 rRNA) Sequence-Structure Phylogenetics: Towards an Automated Reconstruction of the Green Algal Tree of Life

    Get PDF
    L). Some have advocated the use of the nuclear-encoded, internal transcribed spacer two (ITS2) as an alternative to the traditional chloroplast markers. However, the ITS2 is broadly perceived to be insufficiently conserved or to be confounded by introgression or biparental inheritance patterns, precluding its broad use in phylogenetic reconstruction or as a DNA barcode. A growing body of evidence has shown that simultaneous analysis of nucleotide data with secondary structure information can overcome at least some of the limitations of ITS2. The goal of this investigation was to assess the feasibility of an automated, sequence-structure approach for analysis of IT2 data from a large sampling of phylum Chlorophyta.Sequences and secondary structures from 591 chlorophycean, 741 trebouxiophycean and 938 ulvophycean algae, all obtained from the ITS2 Database, were aligned using a sequence structure-specific scoring matrix. Phylogenetic relationships were reconstructed by Profile Neighbor-Joining coupled with a sequence structure-specific, general time reversible substitution model. Results from analyses of the ITS2 data were robust at multiple nodes and showed considerable congruence with results from published phylogenetic analyses.Our observations on the power of automated, sequence-structure analyses of ITS2 to reconstruct phylum-level phylogenies of the green algae validate this approach to assessing diversity for large sets of chlorophytan taxa. Moreover, our results indicate that objections to the use of ITS2 for DNA barcoding should be weighed against the utility of an automated, data analysis approach with demonstrated power to reconstruct evolutionary patterns for highly divergent lineages

    Validation of the ITS2 Region as a Novel DNA Barcode for Identifying Medicinal Plant Species

    Get PDF
    BACKGROUND: The plant working group of the Consortium for the Barcode of Life recommended the two-locus combination of rbcL+matK as the plant barcode, yet the combination was shown to successfully discriminate among 907 samples from 550 species at the species level with a probability of 72%. The group admits that the two-locus barcode is far from perfect due to the low identification rate, and the search is not over. METHODOLOGY/PRINCIPAL FINDINGS: Here, we compared seven candidate DNA barcodes (psbA-trnH, matK, rbcL, rpoC1, ycf5, ITS2, and ITS) from medicinal plant species. Our ranking criteria included PCR amplification efficiency, differential intra- and inter-specific divergences, and the DNA barcoding gap. Our data suggest that the second internal transcribed spacer (ITS2) of nuclear ribosomal DNA represents the most suitable region for DNA barcoding applications. Furthermore, we tested the discrimination ability of ITS2 in more than 6600 plant samples belonging to 4800 species from 753 distinct genera and found that the rate of successful identification with the ITS2 was 92.7% at the species level. CONCLUSIONS: The ITS2 region can be potentially used as a standard DNA barcode to identify medicinal plants and their closely related species. We also propose that ITS2 can serve as a novel universal barcode for the identification of a broader range of plant taxa

    Experimental evaluation of cohesive and adhesive bond strength and fracture energy of bitumen-aggregate systems

    Get PDF
    Degradation of asphalt pavements is an inevitable phenomenon due to the combined effects of high traffic loads and harsh environmental conditions. Deterioration can be in the form of cohesive failure of the bitumen and/or bitumen-filler mastic or by adhesive failure between bitumen and aggregate. This paper presents an experimental investigation to characterise the cohesive and adhesive strength and fracture energy of bitumen-aggregate samples. The pneumatic adhesion tensile testing instrument test and the peel test were used to quantify the tensile fracture strength and fracture energy of different bitumen-aggregate combinations, with a view to analyse the influence of several parameters on the strength of the bitumen film or bitumen-aggregate interface. From the experimental results, harder (40/60 pen) bitumen tends to show much higher tensile strength and fracture energy than softer (70/100 pen) bitumen. Tensile strength is shown to be sensitive to testing temperature with the failure regime changing from cohesive to mixed cohesive/adhesive failure with decreasing temperature. In addition, the results show that aggregate properties do not influence the bonding strength if cohesive failure occurs, but with adhesive failure, granite aggregate tends to produce a higher bonding strength than limestone aggregate in the dry condition. In terms of the peel test, the fracture energy experienced an increasing trend with increasing film thickness. However, the normalised toughness decreased when film thickness increased from 0.2 to 0.9 mm

    Inhalation of β2 agonists impairs the clearance of nontypable Haemophilus influenzae from the murine respiratory tract

    Get PDF
    BACKGROUND: Nontypable Haemophilus influenzae (NTHi) is a common bacterial pathogen causing human respiratory tract infections under permissive conditions such as chronic obstructive pulmonary disease. Inhalation of β2-receptor agonists is a widely used treatment in patients with chronic obstructive pulmonary disease. The aim of this study was to determine the effect of inhalation of β2 agonists on the host immune response to respiratory tract infection with NTHi. METHODS: Mouse alveolar macrophages were stimulated in vitro with NTHi in the presence or absence of the β2 receptor agonists salmeterol or salbutamol. In addition, mice received salmeterol or salbutamol by inhalation and were intranasally infected with NTHi. End points were pulmonary inflammation and bacterial loads. RESULTS: Both salmeterol and salbutamol inhibited NTHi induced tumor necrosis factor-α (TNFα) release by mouse alveolar macrophages in vitro by a β receptor dependent mechanism. In line, inhalation of either salmeterol or salbutamol was associated with a reduced early TNFα production in lungs of mice infected intranasally with NTHi, an effect that was reversed by concurrent treatment with the β blocker propranolol. The clearance of NTHi from the lungs was impaired in mice treated with salmeterol or salbutamol, an adverse effect that was prevented by propranolol and independent of the reduction in TNFα. CONCLUSION: These data suggest that inhalation of salmeterol or salbutamol may negatively influence an effective clearance of NTHi from the airways

    A Cognitive Architecture Based on a Learning Classifier System with Spiking Classifiers

    Get PDF
    © 2015, Springer Science+Business Media New York. Learning classifier systems (LCS) are population-based reinforcement learners that were originally designed to model various cognitive phenomena. This paper presents an explicitly cognitive LCS by using spiking neural networks as classifiers, providing each classifier with a measure of temporal dynamism. We employ a constructivist model of growth of both neurons and synaptic connections, which permits a genetic algorithm to automatically evolve sufficiently-complex neural structures. The spiking classifiers are coupled with a temporally-sensitive reinforcement learning algorithm, which allows the system to perform temporal state decomposition by appropriately rewarding “macro-actions”, created by chaining together multiple atomic actions. The combination of temporal reinforcement learning and neural information processing is shown to outperform benchmark neural classifier systems, and successfully solve a robotic navigation task

    Imbalanced decision hierarchy in addicts emerging from drug-hijacked dopamine spiraling circuit

    Get PDF
    Despite explicitly wanting to quit, long-term addicts find themselves powerless to resist drugs, despite knowing that drug-taking may be a harmful course of action. Such inconsistency between the explicit knowledge of negative consequences and the compulsive behavioral patterns represents a cognitive/behavioral conflict that is a central characteristic of addiction. Neurobiologically, differential cue-induced activity in distinct striatal subregions, as well as the dopamine connectivity spiraling from ventral striatal regions to the dorsal regions, play critical roles in compulsive drug seeking. However, the functional mechanism that integrates these neuropharmacological observations with the above-mentioned cognitive/behavioral conflict is unknown. Here we provide a formal computational explanation for the drug-induced cognitive inconsistency that is apparent in the addicts' “self-described mistake”. We show that addictive drugs gradually produce a motivational bias toward drug-seeking at low-level habitual decision processes, despite the low abstract cognitive valuation of this behavior. This pathology emerges within the hierarchical reinforcement learning framework when chronic exposure to the drug pharmacologically produces pathologicaly persistent phasic dopamine signals. Thereby the drug hijacks the dopaminergic spirals that cascade the reinforcement signals down the ventro-dorsal cortico-striatal hierarchy. Neurobiologically, our theory accounts for rapid development of drug cue-elicited dopamine efflux in the ventral striatum and a delayed response in the dorsal striatum. Our theory also shows how this response pattern depends critically on the dopamine spiraling circuitry. Behaviorally, our framework explains gradual insensitivity of drug-seeking to drug-associated punishments, the blocking phenomenon for drug outcomes, and the persistent preference for drugs over natural rewards by addicts. The model suggests testable predictions and beyond that, sets the stage for a view of addiction as a pathology of hierarchical decision-making processes. This view is complementary to the traditional interpretation of addiction as interaction between habitual and goal-directed decision systems
    corecore