
ar
X

iv
:1

50
8.

07
70

0v
1

 [c
s.

N
E

]
31

 A
ug

 2
01

5

Arxiv manuscript No.
(will be inserted by the editor)

A Cognitive Architecture Based on a Learning Classifier
System with Spiking Classifiers

David Howard · Larry Bull · Pier-Luca Lanzi

the date of receipt and acceptance should be inserted later

Abstract Learning Classifier Systems (LCS) are population-based reinforcement learners
that were originally designed to model various cognitive phenomena. This paper presents an
explicitly cognitive LCS by using spiking neural networks as classifiers, providing each clas-
sifier with a measure of temporal dynamism. We employ a constructivist model of growth of
both neurons and synaptic connections, which permits a Genetic Algorithm (GA) to auto-
matically evolve sufficiently-complex neural structures.The spiking classifiers are coupled
with a temporally-sensitive reinforcement learning algorithm, which allows the system to
perform temporal state decomposition by appropriately rewarding “macro-actions”, created
by chaining together multiple atomic actions. The combination of temporal reinforcement
learning and neural information processing is shown to outperform benchmark neural clas-
sifier systems, and successfully solve a robotic navigationtask.

Keywords Learning Classifier Systems· Spiking Neural Networks· Self-adaptation·
Semi-MDP

1 Introduction

Learning Classifier Systems (LCS) [23] — for example the firstLCS, CS1 [24] — were
originally devised to investigate cognitive systems that model the interation of a Genetic
Algorithm (GA) [22] and Reinforcement Learning (RL) [46]. An LCS involves a population
of classifiers whose condition determines which subspaces of the state space they are active
in, and an action which is advocated in those subspaces. The GA is used to generate useful
condition, action pairings (i.e., when a classifier is active and what it does when it is active),
and RL is used to appropriately reward the results of taking an action in a given state. In
this way, an LCS can generate optimal action selection policies in an environment. An LCS

G. Howard
Autonomous Systems Program, Queensland Centre for Advanced Technology, Australia
E-mail: david.howard@csiro.au

L. Bull
Faculty of Environment and Technology, University of the West of England, UK

P.-L. Lanzi
Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UWE Bristol Research Repository

https://core.ac.uk/display/323894598?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1508.07700v1

2 David Howard et al.

therefore consists of three main components: a GA, an RL scheme, and a population of
classifiers.

When viewing an LCS as a cognitive architecture, we must consider the cognitive plau-
sibility of the various components. RL has always had a clearconnection to cognition (e.g.,
[42]), and the GA aspect (Darwinian reproducing classifierswith genetic variation) has re-
cently been linked to concrete low-level cognitive processes through the Darwinian repli-
cation of neurological patterns [15]. The classifier representation is generally highly ab-
stracted, taking the form of, e.g., real intervals [50], hyperellipsoids [7], and feedforward
neural networks [4]. In this article we use spiking neural networks [18], which provides our
system with cognitive validity in all three LCS components.

In this study we focus on using LCS as a cognitive architecture to solve problems that
have a temporal component. Such problems are found ubiquitously in nature, and as such it
is reasonable to assume that a cognitive architecture should be able to solve them. To do so,
it must for account for the temporal nature of the environment in which it acts. Tasks that
take place in environments that contain temporal information are called semi-MDPs [47],
and the ability to solve them is a precursor to complex cognitive behaviours. Some LCS
— such as the temporal classifier system TCS [28] — include a mechanism to permit the
solving of semi-MDPs through temporally persistent actions and a temporal RL algorithm
that explicitly takes time into account when rewarding these actions.

However, the RL is only one part of a temporal cognitive architecture, as the process
of cognition itself is also temporally dynamic [8]. In an LCS, this corresponds to the clas-
sifiers themselves having some temporal dynamism. We have previously studied the use of
temporally dynamic spiking neural network classifiers in the context of LCS [25]. Spiking
networks are of particular interest as (i) they are biologically plausible as part of a cogni-
tive architecture, and (ii) temporal dynamism may provide benefits when solving temporal
problems [34].

To date, there have been no LCS that combine temporal RL with atemporally sensi-
tive classifier representation. Here, we present the first LCS to couple temporally dynamic
classifiers with temporal RL in an LCS framework. The GA uses self-adaptive search pa-
rameters, allowing it to tailor it’s own learning rates in response to repeated interations with
the environment. Such flexibility is thought to be a requirement for the type of “brain-like”
cognitive system that we wish to create.

Our hypothesis is that the coupling of temporal RL (from TCS)and neural process-
ing (from the spiking networks) is somehow beneficial to the system. In other words: is
there a synergistic relationship between spiking networksand temporal RL that can be ex-
ploited when solving semi-MDPs? To address this question, we test our spiking LCS on
two RL benchmark problems and a robotics task. We choose robotics-inspired tasks as they
are challenging and require multiple state transtions to solve. We show that TCS can more
directly use the temporal behaviour of the neurons when solving these semi-MDPs. Exper-
imentation reveals that such a system is able to outperform aneural LCS that does not take
neurodynamics into account.

The main contribution of this work is a hybrid combination oftemporal RL with tem-
poral neurodynamics, creating the first LCS in which the learning algorithm and classifier
representation are (i) temporally sensitive, and (ii) grounded in cognitive science.

A Cognitive Architecture Based on an Spiking LCS 3

2 Background Research

Learning Classifier Systems sit at the cross-disciplinary intersection between RL, ensemble
learning, and evolutionary algorithms. Our work also considers spiking networks and corre-
sponding areas of computational neuroscience. We focus ourresearch on three main perti-
nent areas: neural learning classifier systems, spiking networks, and, as we are interested in
robotic applications, evolutionary robotics. We begin with a high-level, general description
of how an LCS works.

2.1 Learning Classifier Systems, in Brief

Learning Classifier Systems are online evolutionary reinforcement-based learning systems
that evolve a population of(condition, action, prediction)classifiers using a GA [22]. Early
LCS use a ternary condition, comprising binary digits{0,1} and a generalisation charac-
ter {#}, which matches certain subspaces of a binary-represented state space. Real-valued
conditions [52] similarly provide an upper and lower bound for matching more ubiquitous
continuous-valued state spaces. Generally, the classifierrepresentation used determines the
applicability of the LCS to a given problem type. Each classifier also has an action, which the
classifier advocates in the state subspaces that it matches,and has a prediction value, which
represents the payoff the classifier expects from carrying out its action in those subspaces,
typically attributed through RL.

When an input state is presented to the LCS, each classifier’scondition determines if
the classifier is active (matches). An action is then selected from the list of available actions
advocated by the matching classifiers, which is decided by anaction selection policy. A re-
inforcement learning algorithm then assigns reward and updates classifier prediction values
accordingly to reflect the outcome of the action.

A steady-state GA periodically generates new classifers, gradually improving the ability
of the classifer population to successfully map all states and actions to payoffs. Classifiers
are selected for GA reproduction based on their fitness, which is normally based on either
the prediction value, or, more recently, the accuracy of theclassifiers prediction. Accuracy-
based fitness is generally a better approach, as it stops classifiers from predicting high, inac-
curate values, which can damage the learning process. A benefit of accuracy-based fitness is
that the LCS eventually learns not just the optimal policy and it’s predictions, but a complete
and accuratestate, action, predictionmapping of the entire environment.

Eventually, repeated interaction with the environment (and subsequent reinforcement
learning updates and classifier improvements via the GA) produces a population that can
perform optimal actions in an environment given an arbitrary input state, and generates
accurate predictions for every state, action combination.

2.2 Neural Representations in Learning Classifier Systems

Neural networks have been used in LCS to compute predictions[31], and as a direct re-
placement for classifiers. The initial work exploring artificial neural networks as classifiers
[4] used feedforward MLPs [41] — the input state is passed to the network and used to
calcualte an action. As actions are calculated, as opposed to being static as with traditional
LCS, generalisation occurs as different actions can be calculated in response to different
state inputs. Determination of matching an arbitrary stateinput is computed as a network

4 David Howard et al.

output in the same way as an action. A type of network-wide feature selection [26] has been
shown to provide generalisation by allowing a network to selectively ignore certain inputs,
which is more useful in an ensemble approach than a monolithic one as the networks tend
to benefit from specialisation in the former case.

Various other network forms have since been integrated within an LCS [5, 28]. These
neural classifier systems have all been shown amenable to a neuroevolutionary approach
known as constructivism [39], which can be defined as the gradual adding of complexity
(neurons and connections) to initially-simple networks until some required level of comput-
ing power is attained. Combined with an ensemble system — such as an LCS — simple,
specialised structures can be quickly evolved to contribute meaningfully to solution quality
[13]. Single networks in an ensemble are typically only responsible for a part of the sys-
tem’s overall behaviour (e.g., operating on a reduced subset of inputs, or on a subspace of
the entire problem space). We believe this approach to be particularly suited for spiking
ensembles, as monolithic spiking networks can be difficult to evolve for certain tasks.

More recently neural LCS have been used as cognitive models.Continuous-Time Re-
current Neural Networks [1] are used as one of many possible elements in an LCS using
mixed-media classifiers [10]. Delving further into computational neuroscience, plastic spik-
ing networks have been coupled with an LCS “brain”, and shownto allow for a mechanistic
explanation of the “neuronal replicator” hypothesis of Fernando [15] (briefly, that patterns of
neural activity can undergo a Darwinian evolutionary process within the brain) — although
we note that this system is only described, not implemented [14].

2.3 Spiking Networks

Spiking networks model neural activity in the brain to varying degrees of precision. Two
well-known phenomenological implementations are the Leaky Integrate and Fire (LIF) model
and the Spike Response Model (SRM) [18], with the most well-known mechanistic alter-
native being the Hodgkin-Huxley model [21]. A spiking network comprises a number of
neurons connected by numerous unidirectional synapses. Each neuron has a state, which is
a measure of internal excitation, and emits a voltage spike to all forward-connected neurons
if sufficiently excited. This state is a form of memory which allows the network to solve
temporal problems. Due to spike-based communication and temporal dynamism, spiking
networks are widely accepted to be the most biologically plausible neural model available.
Recent research shows that even a single spiking neuron can effectively process temporal
information in its input [43]

The evolution of spiking networks, especially for temporalproblems, is a promising
area of research. Hagras and Sobh [19] evolve spiking networks for online robot control. Of
particular interest is the work of Dario Floreano’s group. Full topology-plus-weight evolu-
tion is used for vision based robot control [16]. They also produce compact controllers for
ground-based robots [17]. A common theme of this research isevidence that the inherent
dynamics of spiking networks make them suited to temporal robotics tasks.

2.4 Learning Classifier System Robotics

The first LCS specifically for robot control appears in 1994[12]. The authors create a hierar-
chical LCS in which lower-level LCS learn simple behavioursthat high-level LCSs can then
coordinate to generate complex actions. MONALYSA [11] allows the hierarchy itself to

A Cognitive Architecture Based on an Spiking LCS 5

be dynamically reconfigured. Experimental demonstrationsshow that hierarchical decom-
position of behaviour into sub-behaviours produce better performance than a monolithic
approach. Fuzzy classifier systems [2] [37] are shown to be capable of optimal behaviour
non-trivial maze environments.

Other examples of LCS robotics include latent learning [44], which allows a robot to
perform in continuous environments requiring large numbers of state transitions by using an
internal environmental model to build chains of classifierswithout waiting for subsequent
inputs. A simple LCS [9] evolves robot controllers for goal location and object avoidance
tasks in unknown environments. Ongoing research by Butz et al. (e.g., [6]) demonstrates an
LCS that can control a robot arm.

Perhaps the most popular algorithm for LCS robot control is the temporal classifier
system — TCS — which has previously been implemented in LCS employing both strength-
based [45] and accuracy-based [28] fitness. TCS posesses twokey features that make it
suitable for temporal problems. Firstly, it has the abilityto chain together multiple actions
which are automatically executed on receipt of the first input state and can persist through
extended periods of time. Secondly, a temporal reinforcement learning algorithm allows the
system to reward optimally-long action chains. As TCS can search a for optimal temporal
actions, the need to predefine such actions is removed; TCS can therefore automatically
perform temporal state decomposition across large numbersof state transitions.

Further examples of TCS robot control include a demonstration of the ability to disam-
biguate between aliased states using an internal memory register [49]. More recent research
[36] compares results of a T-maze navigation task, again using a memory register to handle
aliased states. Results show strong performance in both real and simulated robotics tasks.
TCS has also coupled with MLP neural networks [27], althoughthese are simply feedfor-
ward input-to-output mappings and as such do not possess anytrue neural processing ability.
To date, no TCS has employed a temporally dynamic classifier represention.

In summary, we have shown that:

– Spiking networks are biologically plausible processors oftemporal information.
– Spiking robotic controllers have previously been demonstrated to show high perfor-

mance in semi-MDP robotics tasks.
– LCS robotics has a strong track record of success, especially in the case of the TCS

classifier system.

This section is intended to motivate experimentation on a logical extension of TCS,
where for the first time a temporally-sensitive classifier representation is coupled with a
temporal reinforcement learning scheme. This approach aims to move towards a more pow-
erful, plausible cognitive architecture based on the rich intrinsic neural dynamics of spiking
classifiers.

3 Implementation

To clarify some important nomenclature: Anexperimentlasts for a number of trials. Each
trial consists of a number ofagent steps. An agent step begins with the receipt of sensory
input and ends with an action being generated by the network and carried out. To generate
the action, the state input is processed 5 times by each network (5 network steps), and the
resulting spike trains are used to calculate the action.

As TCS can traverse multiple states following a single sensory input, we distinguish
between anagent step, which corresponds to a single action taken in an environment, and a

6 David Howard et al.

I2

I3

I4

H0

H1

H2

H3

O1

O2

O3

I5

I0

I1

Fig. 1: Showing a sample spiking network during activation.A neuron may be excitatory (or-
ange/dark shade) or inhibitory (grey/light shade), and hasa membrane potential (blue/dark
filling of the centre circle). Membrane potential may build through a number of timesteps,
eventually surpassing a threshold and emitting a spike (filled inner circle), before resetting
(empty inner circle). Each network has a problem-dependentnumber of inputs, initially one
hidden layer neuron, and three outputs, the latter of which is the “dont-match” neuron.

macro stepwhich is a chain of multiple agent steps. Note that a step in these environments
is equivalent to an action.

3.1 Spiking Classifiers

Discrete-time Leaky Integrate and Fire (LIF) [18] networksare used as spiking classifiers,
fulfilling the role of condition and (calculated) action. Three layers of neurons are connected
by numerous weighted connections, which can be recurrent within the hidden layer only.
Each network has one input neuron per state input, and three output neurons. A sample
network is shown in Fig. 1.

On network creation, the hidden layer is populated with a single neuron, whose type is
intitially excitatory (transmit voltagesV≥ 0), otherwise it is inhibitory (V<0) (50% chance
of each). Input and output layer neurons are always excitatory. Each possible connection site
is initially occupied by a connection, and all connections are weighted uniform-randomly in
the range [0-1].

When presented with an input state, each input is scaled to the range [0-1] and applied
to its respective input neuron. Stimulation by incoming voltage (from either the input state
or spikes generated by other neurons) alters a given neuronsmembrane potentialm, m>

0, which by default decreases over time. Surpassing a threshold mθ causes a spike to be
transmitted to all forward-connected neurons, which is weighted according to the weight of
the connection that the spike travels along.m(t) is the membrane potential at processing step
t (calculated following equation 1),I is the input voltage,a is an excitation constant andb
is a leak constant. Immediately after spiking, the neuron resets its membrane potential toc
following equation 2. Parameters area= 0.3, b= 0.05,c= 0.0, mθ = 1.0.

A Cognitive Architecture Based on an Spiking LCS 7

m(t +1) = m(t)+(I +a−bm(t)) (1)

If (m(t)> mθ) m(t) = c (2)

All tasks in this paper require discrete-valued outputs. Togenerate an action, the current
input state is run for 5 network steps, which generates between 0-5 spikes at each of the
three output neurons. We count the number of times each output neuron spikes, and classify
that neurons activity as eitherhigh (3 or more spikes generated out of 5) orlow (less than 3
spikes generated). Each task maps these activations into actions in a different way. The final
output neuron is a “don’t match” neuron that excludes the classifier from the match set if it
has high activation. This is necessary as the action of the classifier must be re-calculated for
each state the classifier encounters, i.e. a classifier may match differently/advocate different
actions in different state subspaces.

3.2 Spiking TCS

Spiking TCS (STCS) is derived from the accuracy-based TCS [28], with the additions of
computed prediction [51] and spiking classifiers. STCS comprises a population of classi-
fiers, which in this case are spiking networks. Each classifier has a prediction weight vector
which is used to compute its prediction value. Note the distinction between “connection
weight”, which refers to a neural network weight, and “prediction weight”, which is used
to calculate classifier prediction. Each classifier has various other parameters, including the
last time it was involved in GA activity, the accuracy of its prediction value, and the fitness
of the classifier.

STCS solves RL problems by controlling the actions of an agent in a task-dependent
state space until either a reward is received, or a time limitis reached. STCS uses two types
of trial, explore and exploit, which are carried out alternately until some predefined trial
limit is reached and the experiment ends. Exploration allows STCS to evaluate the benefits of
carrying out various state, action combinations, and to incrementally build a payoff mapping
of the environment. Exploitation tests the current abilityof STCS to solve the problem.

A trial commences with the reciept of an initial statest , which is processed by each
network to calculate matching and advocated action. All classifiers that match the state are
put into a match set [M]. Full exploration of the state space,which is key to the learning
ability of the system, can be hindered if some actions are missing from [M]. If this is the
case,coveringrepeatedly generates random networks until the newly-created network action
equals the missing action.

Classifier predictioncl.p is then computed as a linear combination of the prediction
weight vectorw and the current statest , which promotes generalisation by allowing the
same classifier to accurately predict different values in different states (equation 3). The
weight vector is always one element larger than the state vector, with all elements initially
0. Note that the first element ofw is multipled by a constantx0.

cl.p(st) = cl.w0∗x0+∑
i>0

cl.wi ∗st(i) (3)

Classifier predictions are weighted by their fitness, and averaged for each action to pro-
vide a mean estimated payoff per action (creating the prediction array). STCS then selects
a system actionfrom the prediction array. This action is selected payoff-proportionately in
explore trials [28], to provide some exploration without encouraging time-wasting random

8 David Howard et al.

action selection (which is the traditional policy [51]). Inexploit trials, the highest-payoff
system action is deterministically selected. All classifiers that advocate the selected system
action are put into the action set [A]. The system action is then carried out.

3.2.1 The Drop-decision Cycle

As with other TCS, STCS allows [A] to control the agent for more than one agent step by
forming extended macro steps. Once the first action is taken,STCS enters thedrop-decision
cycle. The next input state is fed into [A], and the spiking classifiers in [A] recalculate their
actions/matching. If all classifiers in [A] still advocate the system action given this new
input, [A] persists in controlling the agent. If no classifiers match the state, or a timeout
tdrop is reached, the drop-decision cycle is terminated. If only some classifiers still match,
proportional fitness-weighted payoff selection picks a classifier from [A]:

– If the classifier matches we continue with [A], removing non-matching classifiers.
– If the classifier does not match, we remove matching classifiers from [A], perform nec-

essary parameter updates, then exit the drop-decision cycle.

If classifiers in [A] advocate different actions, a “winning” system action is picked from
[A] in the same way. All classifiers that do not advocate the newly-selected system action are
removed from [A]. Classifiers removed in this way are not candidates for parameter updates;
as the outcome of using their action is not explored, an accurate prediction value cannot be
ascertained.

Following this, the current [A] is saved as [A−1]. A new [M] is formed and STCS pro-
ceeds to calculate predictions, select a system action, andre-enter the drop-decision cycle.
The TCS algorithm is shown in Fig. 2. This process continues until reward is returned or a
timeout is reached, which ends the trial.

When the drop-decision cycle terminates, external reward is potentially returned from
the environment if the goal state is reached, and the classifiers remaining in [A] are updated.
Classifiers in the previous action set [A−1] may receive a discounted reward.

3.2.2 Temporal RL Component

Traditionally, reinforcement in LCS is based on Q-learning[48]. This is unsuitable for semi-
MDPs as it does not take time into account when attributing reward. Equation 4 shows the
TCS reinforcement forumula.P is the target prediction,r is external reward, andmaxPis
the highest prediction array value for the current state.

The first reward factor,e−ϕtt , discounts the immediate external reward by a function
of tt , the total number of agent steps taken in the trial. The second reward factor,e−ρt i ,
discounts any delayed reward by a function oft i , the number of agent steps taken since the
last [M] formation. The reinforcement therefore acts to reward efficient overall solutions,
and encourage a smaller number of long macro steps per trial.ϕ andρ are experimentally-
determined discounting factors.

P= (e−ϕtt)r +(e−ρt i)×maxP (4)

Next, a classifier’s prediction value is updated by alteringthe prediction weight vector
w of each classifier in [A] using a version of the delta rule (equations5 and 6). Note that P
is the target prediction value as calculated from the temporal RL formula above. Prediction
error is then updated (equation 7) —ε is the classifier’s error andβ is a learning rate.

A Cognitive Architecture Based on an Spiking LCS 9

Fig. 2: Flowchart showing the TCS drop-decision cycle.

∆cl.wi =
η

||xt−1||2
(P−cl.p(st−1))xt−1(i) (5)

cl.wi ← cl.wi +∆wi (6)

ε ← ε +β (|P−cl.p(st−1)|− ε) (7)

10 David Howard et al.

STCS uses macroclassifiers to enhance computational efficiency. A macroclassifier rep-
resents a number of identical classifiers, and its numerosity parameter indicates the number
of identical classifiers that the macroclassifier represents. Subsumption is the mechanism
by which macroclassifiers are formed — one classifier is subsumed by another if its is less
general than the subsumer and advocates the same action. If aclassifier is subsumed, it is
deleted from the population and the subsumers numerosity increases by 1. This check for
generality is easy for simple classifier representations such as intervals and ternary alpha-
bets, as it is obvious how general such a classifier is. For spiking classifiers the process
becomes computationally taxing as an exhaustive search must be carried out, computing all
classifier outputs for a given state space.

There are normally two forms of subsumption [51], action setsubsumption and GA
subsumption. We use GA subsumption, which is limited by having two parents and two
children = 4 exhaustive comparisons per GA cycle. We action set subsumption as it requires
checking a classifier in [A] against all other members of [A],which is computationally
infeasible as [A] can contain hundreds of classifiers.

Each classifer has a record of the last time it was involved ina GA, ts. Once external
reward (or a drop decision) has been signalled, the GA will activate in [A] (or if no external
reward is signalled, [A−1]) if the averagets in [A] ([A −1]) exceeds some thresholdθGA.

3.3 Neuro-evolutionary Algorithm

STCS uses a steady-state niche GA, which activates within anaction set. Two parents are
selected and used to create two offspring. The offspring areinserted into the population,
and two classifiers are deleted if the maximum population size is reached. Classifiers are
only created in [A], but deletion occurs from the popuation as a whole, therefore there is an
implicit pressure towards generality as the best chance of survival is to appear in as many
[A] as possble.

Each classifier has it’s own self-adaptive mutation rates, which are initially seeded
uniform-randomly in the range [0,1] and mutated as with an Evolution Strategy [40] as
they are passed from parent to child following equation 8.

µ→ µ expN(0,1) (8)

This approach is adopted as it is envisaged that efficient search of weights and neurons
will require different rates, e.g., adding a neuron is likely to impact a network more than
changing a connection weight, so less neuron addition events than connection weight change
events are likely to be desirable. Self-adaptation is particularly relevant when considering
the system as a cognitive architecture — brainlike systems must be able to autonomously
adapt to a changing environment and adjust their learning rates accordingly.

The genome of each network comprises a variable-length vector of connections and a
variable-length vector of neurons. Different classifier parameters govern the mutation rates
of connection weights (µ), connection addition/removal (τ), and neuron addition/removal
(ψ andω). For each comparison to one of these rates a uniform-randomnumber is gener-
ated; if it is lower than the rate, the variable is said to besatisfiedat that allelle. During GA
application, for each connection, satisfaction ofµ alters the weight by±0-0.1. Each possible
connection site in the network is traversed and, on satisfaction of τ , either a new connection
is added if the site is vacant, or the pre-existing connection at that site is removed.ψ is
checked once, and adds or removes a neuron from the hidden layer based on satisfaction of

A Cognitive Architecture Based on an Spiking LCS 11

ω . New neurons are randomly assigned a type (inhibitory/excitatory, 50% chance of either),
and each connection site on a new neuron has a 50% chance of having a connection. New
connections are randomly weighted between 0 and 1.

For clarity, we now summarise the steps involved in a GA cycle. First, two offspring net-
works are selected. The parameters for those networks are self-adapted. Connection weights
are altered based onµ, then node addition/removal takes place based onψ andω . Finally,
connections are added or removed based onτ . These networks are inserted into the pop-
ulation and networks are deleted based on a combination of their fitness and the sizes of
the action sets they participate in. This encourages the population to spread approximately
evenly around the state space.

4 Experimentation

We selected three continuous-state semi-MDP test problemsto act as benchmarks with
which to assess various important qualities of the system. Ten experimental repeats per
test problem are used to create averages. The current state of the system is saved every 50
trials and used to perform statistical analysis of results.When comparing the STCS to other
systems, twin-tailed t-tests are used to assess statistical significance (significance indicated
at P<0.05).

Neuron membrane potentialsm are only reset once once at the beginning of each trial.
Preserving neuron states in this manner allows us to exploitthe underlying temporal infor-
mation in these semi-MDPs, which we believe is a key determinant of the performance of
the system.

Each experiment is comprised of a problem-dependent numberof trials, which alternate
between explore and exploit. A trial starts with the agent randomly positioned in that envi-
ronments start zone, consists of a number of [M] and [A] formations as the agent navigates
the environment, and terminates with either the receipt of external reward when the agent
reaches the goal state or a timeout after 200 macro steps. Forall experiments, averages are
taken from the entire population for all experimental repeats.

In the first experiment, we assess the ability of STCS to form appropriately-sized ac-
tion chains. The second experiment demonstrates the scalability of the system to very fine-
grained state spaces. Experiments 1 and 2 are also standard RL test problems. The final
experiment shows the ability of the system to successfully solve a noisy robotics task. The
overarching goal of the three experiments is to demonstratethe effectiveness of combining
neural information processing (spiking classifiers) with temporal RL (TCS reinforcement)
on a series of semi-MDPs.

Spiking N-XCSF is parameterized as follows: learning rateβ=0.2 (0 < β ≤ 1), GA
thresholdθGA=50, deletion thresholdθDEL=50, XCSF constantx0=1, XCSF learning rate
η=0.2 (0< η ≤ 1). All other XCSF parameters follow [51]. TCS parameters areϕ=0.45,
ρ=0.005 —tdrop varies between experiments. All networks initially have a single hidden
layer neuron.

4.1 Experiment 1: Mountain-Car

This test problem is selected to assess the ability of the spiking classifier system to correctly
switch between different actions in a single [M] formation.Dropping and reforming [M]

12 David Howard et al.

0 1000 2000 3000 4000 5000
Trials

0

2

4

6

8

10

12

14

St
ep

s t
ak
en

STCS
Optimal

(a)

0 1000 2000 3000 4000 5000
Trials

1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

Me
an

 c
on

ne
ct
ed

 h
id
de

n
la
ye

r n
eu

ro
ns

STCS

(b)

0 1000 2000 3000 4000 5000
Trials

0.35

0.40

0.45

0.50

0.55

Av
er
ag

e
se

lf-
ad

ap
tiv

e
pa

ra
m
et
er
 v
al
ue

s µ

ψ

ω

τ

(c)

0 1000 2000 3000 4000 5000
Trials

80

85

90

95

100

Av
er
ag

e
co

nn
ec

tiv
ity

 (%
)

STCS

(d)

Fig. 3: Mountain-car (a) average macro steps, (b) average connected hidden layer neurons,
(c) average self-adaptive parameter values, (d) average enabled connections in STCS

is discouraged — each drop takes up an extra step, and we ideally want the classifiers to
recalculate their action within the current [A].

The mountain-car problem [46] is a classic RL problem, in which a car must be guided
out of a one-dimensional valley. In many cases, the car must move away from the goal
state to attain enough momentum to climb out of the valley, meaning that it must switch
actions. State variables areposition [-1.2, 0.6], andvelocity [-0.07, 0.07]. Three actions
are available: forward (increase velocity), backward (decrease velocity), and no movement
(maintain velocity). As three actions are possible, outputneuron activations are mapped onto
actions as follows: forward =high, high, backward =low, low, and no movement =high,
low or low, high.

Each experiment consists of 5000 trials, 2500 explore and 2500 exploit, with population
sizeN=1000 andtdrop=20. The agent is initally randomly placed in the environment (except
in the goal state) with a random velocity, and has to reach thegoal state (where the cars
position is> 0.5) in the fewest possible macro steps (average optimal=1.6).

4.1.1 Results

Fig. 3(a) shows attainment of optimum state space segregations within 100 trials. The TCS
reinforcement formula allows for the generation of shortest-length atomic action chains

A Cognitive Architecture Based on an Spiking LCS 13

within 480 trials, indicating more expedient convergence than XCSF with tile coding [33]
(≈2000 trials to convergence) with the same population size. This is due to the ability of
STCS to quickly explore the space of(state, action) combinations by chaining together
actions during exploration trials.

Average neurons per classifier (Fig. 3(b) gradually increases to a final value of 1.65.
Self-adaptive parameters decline from their initial values (Fig. 3(c)). Final network connec-
tivity (Fig. 3(d)) steadily declines to a final average valueof 84.5%. Action set analysis
shows that STCS allows the agent to reach the goal state from any intial position/velocity
combination by forming the minimal number of match sets. Actions are altered from forward
to backward as the agent builds momentum; this is achieved bythe networks recalculating
their actions through a combination of the current state input and the network’s own internal
state to alter the chosen action.

4.2 Experiment 2: Continuous Grid World

The second experiment takes place in the continuous grid world, [3], a benchmark RL test
problem. This environment is more complex than the mountain-car problem (larger state
space, more actions to choose from), although it does not necessarily require the amount of
action switching seen in that problem. It is chosen as a step towards real robotics problems,
whilst simultaneously allowing us to compare to previous work using a MLP neural net-
works in an identical classifier system [27]. The main difference between the two systems
is that the spiking networks have a temporally-sensitive internal state, whereas the MLP
networks do not. The purpose of this experiment is thereforeto ascertain the benefits of
coupling a richer neural representation (capable of temporal information processing) with
the temporal RL component of TCS. We also compare to a modern temporally dynamic
classifier system [38].

MLP networks are handled in much the same way as the spiking networks, except they
process each input state once in a feedforward manner, and each neuron has an associated
bias (bounded [0-1]), which is mutated as a connection weight. Connection weights are
bounded [-1,1]. As MLPs generate continuous-valued outputs, output neuron activations
are low with output <0.5, andhigh otherwise. See [27] for full implementation details.
MLP networks are a competitive benchmark, with a track record of high performance on
reinforcement learning and problems [20].

The grid world is an enclosed 2D arena withx,y dimensions bounded [0-1]. An agent
is intiallty placed anywhere except the goal, and must navigate to the goal(x+y> 1.90) in
the fewest possible macro steps (average optimal 1.5), whereupon it receives an immediate
reward of 1000 and the next trial begins. All other outcomes give an immediate reward of
0. The statest is defined as the agents(x,y) position. To more closely emulate the noise
inherent in robotics tasks, thex andy positions of the agent are subject to noise; +/- [0%-
5%] of the true position. The activations of the first two output neurons translate to a discrete
movement of length 0.05 as follows: (high, high) = North, (high, low) = East, (low, high) =
South, and (low, low) = West.

As this is a comparative experiment, we measure thestability of a solution. After each
exploit trial, we perform an additional exploit trial from astatic location (0.25, 0.25) and
record how many steps it takes to reach the goal state. We say that stability has been attained
if the optimal number of steps is achieved in 50 consecutive static-location trials. Stability
indicates how quickly the LCS solves the problem.

14 David Howard et al.

Each experiment lasts for 20000 trials and uses a populationN=20000. All other param-
eters are identical to those used in the mountain-car problem.

4.2.1 Comparing to Other LCS

We initially compare to XCSF with real-interval classifiers[32], which is shown to converge
within ≈15000 trials with a population sizeN=10000. We note the formation of optimally-
long action chains in STCS within 5000 trials, with an optimal number of macro-actions
being used within 2000 trials — STCS is therefore at least competitive with this system
despite the more complex classifiers it employs. XCSF with tile coding has been shown
to converge more expediently than STCS [33] (N=20000), although results are critically
dependent on the resolution of the coding and are worse than STCS in the worst case, varying
between 500 and>5000 trials to convergence.

We additionally compare to a modern LCS based on XCSF that uses fuzzy Dynamic
Genetic Programming (DGP) classifiers [38] with the same population sizeN=20000. This
has been chosen as, much like the spiking classifiers used in STCS, DGP classifiers allow for
temporal dynamism. Results (Fig.9 in [38]) show the attainment of optimum performance
within≈30000 trials. STCS converges more quickly than the comparative classifier systems
thanks to the TCS mechanism, which allows for instant generalisation over the search space
and less constrained environmental exploration during exploration trials.

4.2.2 Comparing STCS to MLP TCS

Fig. 4(a) shows optimal performance after 2000 trials for STCS, compared to 5000 trials in
the MLP case. The spiking classifiers contain more hidden layer neurons on average (2.4 vs
2.09), and are slightly less connected (81% vs 84%) (Fig. 4(b)/(c)), however neither of these
differences are statistically significant.

The spiking representation holds one main advantage over the MLP representation in
this environment, having a statistically lower number of macroclassifiers (16552 vs 18148,
P<0.05). This indicates a higher generalisation ability on the part of the spiking networks,
as fewer classifiers are required to cover the entire state space. Generalisation in STCS oc-
curs in two ways, (i) where a single classifier can compute different (accurate) predictions
in different environmental substates, and (ii) where a single classifier can calculate differ-
ent actions based on differing state input. Both types of generalisation appear in the final
population.

We also note that self-adaptive mutation rates are globallylower in the spiking case,
demonstrating the context-sensitivity of the self-adaptation process — Fig. 4(d) shows spik-
ing values ranging between 0.22 and 0.44 and Fig. 4(e) shows MLP values ranging from
0.48 to 0.33 (all significantly different, P<0.05). Lower mutation rates are indicitive of a
more stable evolutionary process, as higher rates tend to beassociated with a non-converged
system.

Next, we decrease the step size from 0.05 to 0.005 and increasetdrop from 20 to 200, pre-
serving the average optimal macro steps to solve at 1.5. All other parameters are unchanged.
We aim to (i) show that STCS is scaleable to larger state spaces that are more represen-
tative of those experienced in robotics problems, and (ii) demonstrate that the benefits of
coupling a temporal RL scheme with a temporally sensitive neural classifier representation
are enhanced as the amount of temporal information in the environment increases.

Fig. 5(a) shows that only STCS can achieve near-optimal performance (average macro
steps 1.35, vs 1.48 for the MLP TCS, P<0.05). MLP TCS never reaches a near-optimal steps

A Cognitive Architecture Based on an Spiking LCS 15

0 5000 10000 15000 20000
Trials

0

5

10

15

20

25

30

Ste
ps
 ta

ke
n

SNN TCS 0.05
MLP TCS 0.05
Optimal

(a)

0 5000 10000 15000 20000
Trials

1.0

1.5

2.0

2.5

3.0

Av
er
ag

e
co

nn
ec

te
d
hi
dd

en
 la

ye
r n

eu
ro
ns

SNN TCS 0.05
MLP TCS 0.05

(b)

0 5000 10000 15000 20000
Trials

80

85

90

95

100

Av
er
ag

e
co

nn
ec

tiv
ity

 (%
)

SNN TCS 0.05
MLP TCS 0.05

(c)

0 5000 10000 15000 20000
Trials

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Av
er
ag

e
se

lf-
ad

ap
tiv

e
pa

ra
m
et
er
 v
al
ue

s

µ

ψ

ω

τ

(d)

0 5000 10000 15000 20000
Trials

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Av
er
ag

e
se

lf-
ad

ap
tiv

e
pa

ra
m
et
er
 v
al
ue

s

µ

ψ

ω

τ

(e)

Fig. 4: Continuous grid world 0.05 (a) average macro steps, (b) average connected hidden
layer nodes, (c) average enabled connections, (d) average STCS self-adaptive parameter
values, (e) average MLP TCS self-adaptive parameter values.

value. Analysis reveals that there are certian regions of the state space in which the classifiers
in [A] cannot recalculate the action required to solve the problem. MLP TCS must therefore
drop the current action set and reform to successfully change action, taking a 1 macro step
penalty when it is forced to do so. As the MLP TCS cannot achieve optimal performance,
it never achieves stability, whereas STCS does so in an average of 1242 trials (P<0.05).

16 David Howard et al.

This result is particularly important when use on robotic problems is considered — many
robotics problems will, in some regions of their state space, require highly heterogeneous
actions where more complex behavioural policies, such as obstacle avoidance, are required.
As evidenced by the final steps values of STCS and MLP TCS, the spiking networks are
more predisposed to allow for actions to be switched betweenwithout reforming a match
set, as opposed to the more homogenous action selection evidenced in MLP networks (e.g.,
[27]).

STCS is significantly better than MLP TCS with regards to macro steps required and
stability. As the main difference between the two representations is the temporal neural pro-
cessing of the spiking networks, we conclude that the combination of temporal RL and a
temporal classifier representation is beneficial to the performance of the system. We note
that the performance of the system increases as the amount oftemporal information in the
problem increases (181.4 vs. 18.4 average state transtionsper trail in the 0.005/0.05 enviro-
ment respectively).

STCS uses statictically fewer neurons than MLP TCS (2.51 vs 2.76, P<0.05), and is
less connected (82.98% vs 85.8%, not statistically significant). These results indicate that
smaller networks can perform more complex state-action mappings thanks to the temporal
inforamtion processing capabilities of the spiking networks.

Self-adaptive parameters are again universally lower in for STCS when compared to
MLP TCS (0.416 vs 0.425 forµ, 0.389 vs 0.412 forψ , 0.47 vs 0.475 forω , and 0.280 vs
0.332 forτ , P<0.05), which indicates a more stable evolutionary process.

4.2.3 Comparing Identical Systems in the Different Environments

A final analysis in the grid world compared STCS in the 0.05 grid world vs the 0.005 grid
world — Table 1. STCS solves both tasks optimally, however stability varies significantly
between the two environments (avg 5637 for 0.05, avg 1244 for0.005, P<0.05). A possible
explanation for this is that, as the average number of discrete movements an agent is required
to make is much greater in the 0.005 environment than in the step size 0.05 case, the spiking
networks have more opportunity to use the temporal information in this semi-MDP, resulting
in a performance difference.

STCS self-adaptive parameters Figs. 4(d) and 5(d) in the twogrid world environments
follow an identical descending order (ω , µ, ψ , τ) the only difference being that the parame-
ter values in Fig. 4(c) are lower in general. Final average self-adaptive mutation values vary
statistically significantly between the different step size environments (all p<0.05). Dif-
fering values again highlight the self-adaptive nature of the learning process, which alters
depending on the environment the system is presented with.

We also note that MLP TCS performance degrades with increasing step size, whereas
STCS improves. In other words, STCS seems more suited to solving an environment with
large numbers of state transitions, whereas MLPs lack the neural processing abilities re-
quired to handle such environments.

4.3 Robotics Problem

As a final evaluation, we test STCS on a robotics problem in which a agent must navigate
towards a light source whilst avoiding an obstacle. Our chosen robotics simulator is Webots
[35]. The environment is a walled arena with coordinates ranging from [-1,1] in bothx and
y directions. A box is placed centrally in the arena and a lightsource (modelled on a 15W

A Cognitive Architecture Based on an Spiking LCS 17

0 5000 10000 15000 20000
Trials

0

5

10

15

20

25

30

Ste
ps
 ta

ke
n

SNN TCS 0.005
MLP TCS 0.005
Optimal

(a)

0 5000 10000 15000 20000
Trials

1.0

1.5

2.0

2.5

3.0

Av
er
ag

e
co

nn
ec

te
d
hi
dd

en
 la

ye
r n

eu
ro
ns

SNN TCS 0.005
MLP TCS 0.005

(b)

0 5000 10000 15000 20000
Trials

80

85

90

95

100

Av
er
ag

e
co

nn
ec

tiv
ity

 (%
)

SNN TCS 0.005
MLP TCS 0.005

(c)

0 5000 10000 15000 20000
Trials

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Av
er
ag

e
se

lf-
ad

ap
tiv

e
pa

ra
m
et
er
 v
al
ue

s

µ

ψ

ω

τ

(d)

0 5000 10000 15000 20000
Trials

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

Av
er
ag

e
se

lf-
ad

ap
tiv

e
pa

ra
m
et
er
 v
al
ue

s

µ

ψ

ω

τ

(e)

Fig. 5: Continuous grid world 0.005 (a) average macro steps,(b) average connected hidden
layer nodes, (c) average enabled connections, (d) average STCS self-adaptive parameter
values, (e) average MLP TCS self-adaptive parameter values.

bulb with realistic attenuation values) is placed atx=1, y=1, z=1. The agent’s random start
position is constrained (initialx+ y < -1.5), forcing the agent to learn obstacle avoidance
behaviour. The environment is shown in Fig. 6(a).

STCS commands a differential-drive agent with 3 light sensors and 3 distance sensors
shown at positions 0, 2, and 5 in Fig. 6(b) (all other IR/lightsensors are disabled). Random-

18 David Howard et al.

Table 1: Detailing main averages and p-values results in STCS for the grid world with step
sizes 0.05 and 0.005

Metric Step size Average P-value
Stability 0.05 5637.5

0.005 1244.13 2.42×10−6

Neurons 0.05 2.40
0.005 2.55 0.15

Connectivity 0.05 86.13
0.005 85.09 0.36

Macroclassifiers 0.05 16552.25
0.005 18384.13 0.03

uniform sensory noise in included –±2% for IR sensors and±10% for light sensors. In
early trials, it is likely that the agent will bump into obstacles (before it has learned how to
correctly respond to IR sensor readings). Two bump sensors are placed to the front-left and
front-right of the agent — see Fig. 6(b) — activating a bumpercauses the agent to drop the
current action, immediately reverse 10cm, and reform [M] (an effective penalty of 1 step).

For each agent step (64ms in simulation time), the agent samples the six sensors: the
six-dimensional input vector is then scaled so that the entire sensor range falls within [0,1],
and is used as network inputI in equation 1. Three actions are possible;forward, (maximum
movement on both wheels,high activation of the first two output neurons) and continuous
turns to both theleft (high activation on the first output neuron,low on the second) and
right (low activation on the first output neuron,high on the second) — caused by halving
the left/right motor outputs respectively. When the agent reaches the reward zone (where
x+ y >1.6), an immediate reward of 1000 is returned and the next trial begun. All other
movements give an immediate reward of 0.

This problem is chosen due to its difficulty — the obstacle forces STCS to switch actions
multiple times to achieve optimal performance. The agent experiences realistic sensory noise
and wheel slip. The orientation of the agent is also taken into account, meaning the chaining
together of individual actions into macro actions is more complex and dependent i.e, on the
orientation of the agent with respect to the light source. The input state is three times as large
as in the grid world experiments, and the state space significantly larger (average optimal
640 state transitions per trial, compared to 181 for the 0.005 grid world and 18.4 for the 0.05
grid world).

Parameters are identical to previous experiments, exceptN=3000,tdrop=300, and each
experiment lasts for 500 trials. To allow the LCS to immediately make useful partitions in
the state space, networks are intitially seeded with 6 hidden layer neurons and are initially
50% connected. This experiment has an optimal macro steps value of 2.5.

4.4 Results

Fig. 6(c) shows the average macro step values attained. Starting from 75 macro steps, the
system shows swift attainment of near optimal performance per trial after 300 trials. Per-
formance compares favourably to similar TCS robotics experiments, (e.g. [28]). Neurons
and connectivity are largely unaltered from their initial values, due to the reduction in the
number of trials.

A Cognitive Architecture Based on an Spiking LCS 19

(a) (b)

0 100 200 300 400 500
Trials

0

5

10

15

20

S
te
p
s
ta
ke
n

SNN TCS
Optimal

(c)

Fig. 6: (a)The test environment. The agent begins in the lower-left and must reach a light
source in the upper-right, circumnavigating the central obstacle.(b)Khepera sensory arrange-
ment. 3 light sensors and 3 IR sensors share positions 0, 2, and 5. Two bump sensors, B1
and B2, are shown attached at 45 degree angles to the front-left and front-right of the robot.
(c) Average macro steps for the experiment.

Fig.7 shows how the generated path quality in exploit mode improves through succes-
sive trials. Initially, the agent bumps into walls repeatedly and fails to find the goal state.
After approximately 50 trials, the agent finds the goal state(although this takes many [M]
formations). The final image shows a sample path after 150 generations, requiring three [M]
formations (labelled) but using action switching within those sets. Continued improvements
increase the duration of each macro action, reducing the number of macro actions required
on average.

STCS can — in most cases — evolve networks that perform segregations in action
space without dropping [A] and reforming [M] via the majority of the networks in [A]
recalculating their actions to change the action advocatedby [A] in response to some state
input. Action alteration is usually due to IR sensors perturbing the networks action to turn
the agent away from an obstacle or towards the light source, although the agent is also
observed to display the capability to alter action based on light sensor input alone. A lesser-
used action switching mechanism involved networks activating the “dont match” node so
that networks advocating certain actions are dropped from [A] at the correct time. This
made it more likely for the system action to switch.Considering all in-[A] action switches,
the first method is used significantly more frequently (P<0.05) as it kept more classifiers in
[A], helping to retain classifier variety for future switches. Subsequent trials — Fig.7(c) —
display increased amounts of action switching, which reduces the average number of [M]
formations required per trial to the optimum value whilst preserving the overall path quality.

5 Conclusions and Outlook

In this article we have presented a cognitive architecture based on temporal reinforcement
learning and spiking networks. Our hypothesis — that the coupling of temporal RL (from
TCS) and neural processing (from the spiking networks) is beneficial to the system, has been
shown throughout our results. STCS allows the generation — and accurate payoff assign-
ment — of high-level macro actions from heterogenous chainsof simple discrete actions,

20 David Howard et al.

(a)

1

2

3

(b)

1

2

3

(c)

Fig. 7: Showing typical agent paths at various stages of the experiment (goal state denoted
with a star). (a) Initially, the agent repeatedly collides with a wall until the trial step limit is
reached. (b) After approx. 50 trials, the agent initially reaches the goal state by (1) colliding
with a wall, (2) turning until the step limit is reached, thenrepeatedly colliding with the
wall until the robot aligns with the goal state, (3) finally proceeding to the goal state. (c)
Finally, the agent learns to navigate to the goal state in a minimal number of steps (initially
3 match sets are formed, which can then be simplified into fewer match sets through action
recalculation).

which allows the agent to handle environments requiring large amounts of state transitions.
Unlike many RL approaches to solve continuous-state spaces, STCS can solve semi-MDP
environments without having to prediscretise the state space. Our results show that:

– STCS uses fewer macroclassifiers than MLP TCS on the grid world 0.05 environment,
indicating more generalisation ability.

– STCS attains significantly better performance than MLP TCS in the grid world 0.005,
where the main difference is the provision of neural processing in STCS. Latent tempo-
ral information in the problem is effectively harnessed by the spiking networks, resulting
in this performance gain.

– STCS increases performance with increasing numbers of required state transitions, whereas
MLP TCS performance degrades.

– STCS permits simpler temporal discretisations in large, complex state spaces than MLP
TCS. Spiking classifiers aid in allowing the recalculation of actions based on both the
current state input and, uniquely, the networks own internal states.

The final point is particularly important, as it highlights the complimentary nature of
the temporal RL/spiking network combination — by providingthe classifiers with more
computational power (i.e., neural processing, as is not done in other TCS approaches), the
system can learn the simplest, optimal discretisations of state space into required behaviours,
potentially comprising long, complex chains of actions through action recalculation.

As a prototypical cognitive architecture, we also wish to highlight the self-adaptive el-
ements of STCS. Self-adaptation is used to achieve a level ofparameter independence that
is rarely seen in Learning Classifier Systems. Both LCS and RLcan be sensitive to various
parameter selections. Throughout all experiments, the only main parameters changed are
tdrop, population size, and the number of trials. Self-adaptation largely precludes the need

A Cognitive Architecture Based on an Spiking LCS 21

for parameter sweeps, which are required in other TCS systems (Hurst note strong parameter
depedence in some of their TCS research [29]). Self-adaptive parameters vary significantly
between the individual rates, the systems they are implemented in (STCS/MLP TCS), and
the problems those systems solve, highlighting their context-sensitivity.

When self-adapting spiking network parameters, the effectis that the evolutionary pro-
cess itself — and as a result, the networks it produces — is tailored to features of the envi-
ronment. Constructive neuro-evolution is shown to generate context-sensitive structures that
encode important features of robotic navigation, which canbe specific to the environmental
states they are active in. By starting with simple neural structures, the evolutionary process
itself is expediated and approximately minimally-complexnetworks (in terms of neurons
and connections) that encode usefulstate, actioncombinations are discovered in the regions
of the state space in which they are selected.

Since classifier prediction, classifier action, and classifier matching are all computed,
generality is promoted as a single classifier can (i) match all regions of the state space, (ii)
advocate different actions in different state subspaces, and (iii) accurately predict the payoffs
of all state, action pairs which it encodes. We note that it istheoretically possible for a single
classifier to solve entire problems, by calculating the bestaction and accurate predictions in
every state. This does not occur as it is much simpler for the LCS to evolve ensembles of
simpler, specialised networks.

We believe the best direction to take this work is into the realm of increased biologi-
cal realism, i.e., replacing some of the more mechanistic aspects of LCS (set formations,
etc.) with counterparts that are more rigourously groundedin computational neuroscience.
Biologically-realistic extensions can also be applied to the spiking networks, which are par-
ticularly amenable to a form of unsupervised learning knownas spike-time-dependent plas-
ticity (STDP) [30]. This would more closely couple the neural processing to features of the
environment, by allowing a network to react to subsequent input states by varying its con-
nection weights during a trial. This has been discussed, butnot implemented, in the context
of neural replication by Fernando [15].

References

1. Beer RD (1995) On the dynamics of small continuous-time recurrent neu-
ral networks. Adapt Behav 3:469–509, DOI 10.1177/105971239500300405, URL
http://portal.acm.org/citation.cfm?id=218530.218539

2. Bonarini A (1998) Reinforcement distribution to fuzzy classifiers. In: Proceedings of
the IEEE World Congress on Computational Intelligence (WCCI) – Evolutionary Com-
putation, IEEE Computer Press, pp 51–56

3. Boyan JA, Moore AW (1995) Generalization in reinforcement learning: Safely approx-
imating the value function. In: Tesauro G, Touretzky DS, Leen TK (eds) Advances in
Neural Information Processing Systems 7, The MIT Press, Cambridge, MA, pp 369–
376

4. Bull L (2002) On using constructivism in neural classifiersystems. In: Merelo J,
Adamidis P, Beyer HG, Fernandez-Villacanas JL, Schwefel HP(eds) Parallel Problem
Solving from Nature - PPSN VII, Springer Verlag, pp 558–567

5. Bull L, Hurst J (2003) A neural learning classifier system with self-adaptive construc-
tivism. In: Proceedings of the IEEE Congress on Evolutionary Computation, IEEE
Press, pp 991–997

http://portal.acm.org/citation.cfm?id=218530.218539

22 David Howard et al.

6. Butz MV, Herbort O (2008) Context-dependent predictionsand cognitive arm control
with XCSF. In: Ryan C, Keijzer M (eds) Genetic and Evolutionary Computation Con-
ference, GECCO 2008, Proceedings, Atlanta, GA, USA, July 12-16, 2008, ACM, pp
1357–1364

7. Butz MV, Lanzi PL, Wilson SW (2006) Hyper-ellipsoidal conditions in xcs: rotation,
linear approximation, and solution structure. In: GECCO ’06: Proceedings of the 8th
annual conference on Genetic and evolutionary computation, ACM Press, New York,
NY, USA, pp 1457–1464, DOI http://doi.acm.org/10.1145/1143997.1144237

8. Buzsaki G (2006) Rhythms of the Brain. Oxford University Press
9. Cazangi RR, Zuben FJV, Figueiredo M (2003) A classifier system in real applications

for robot navigation. In: IEEE Congress on Evolutionary Computation, IEEE, pp 574–
580

10. Churchill AW, Fernando C (2014) An evolutionary cognitive architecture made of a bag
of networks. Evolutionary Intelligence 7(3):169–182

11. Donnart JY, Meyer JA (1996) Learning reactive and planning rules in a motivationally
autonomous animat. IEEE Transactions on Systems, Man and Cybernetics - Part B:
Cybernetics 26(3):381–395

12. Dorigo M, Colombetti M (1994) Robot shaping: Developingautonomous agents
through learning. Artificial Intelligence 71(2):321–370

13. Fauer S, Schwenker F (2015) Neural network ensembles in reinforcement learning.
Neural Processing Letters 41(1):55–69, DOI 10.1007/s11063-013-9334-5

14. Fernando C (2011) Symbol manipulation and rule learningin spiking neuronal net-
works. Journal of theoretical biology 275(1):29–41

15. Fernando C, Goldstein R, Szathmáry E (2010) The neuronal replicator hypothesis. Neu-
ral Computation 22(11):2809–2857

16. Floreano D, Mattiussi C (2001) Evolution of spiking neural controllers for autonomous
vision-based robots. Lecture Notes in Computer Science 2217:38–61

17. Floreano D, Schoeni N, Caprari G, Blynel J (2002) Evolutionary bitsnspikes. In: In
Artificial Life VIII Proceedings, MIT Press

18. Gerstner W, Kistler W (2002) Spiking Neuron Models - Single Neurons, Populations,
Plasticity. Cambridge University Press

19. Hagras H, Sobh T (2002) Intelligent learning and controlof autonomous robotic agents
operating in unstructured environments. Information Sciences 145(1):1–12

20. He P, Jagannathan S (2007) Reinforcement learning neural-network-based controller for
nonlinear discrete-time systems with input constraints. Systems, Man, and Cybernetics,
Part B: Cybernetics, IEEE Transactions on 37(2):425–436

21. Hodgkin AL, Huxley AF (1952) A quantitative descriptionof membrane current and its
application to conduction and excitation in nerve. The Journal of physiology 117(4):500

22. Holland JH (1975) Adaptation in Natural and Artificial Systems. The University of
Michigan Press, Ann Arbor, Michigan

23. Holland JH (1976) Adaptation. In: Rosen R, Snell F (eds) Progress in Theoretical Biol-
ogy, Academic Press

24. Holland JH, Reitman JS (1978) Cognitive systems based onadaptive algorithms. In:
Waterman DA, Hayes-Roth F (eds) Pattern-Directed Inference Systems, Academic
Press, Orlando, pp 313–329

25. Howard G, Bull L, Lanzi PL (2010) A spiking neural representation for xcsf. In: IEEE
Congress on Evolutionary Computation (CEC), IEEE, pp 1–8

26. Howard GD, Bull L (2008) On the effects of node duplication and connection-oriented
constructivism in neural XCSF. In: Ryan C, Keijzer M (eds) Genetic and Evolutionary

A Cognitive Architecture Based on an Spiking LCS 23

Computation Conference, GECCO 2008, Proceedings, Atlanta, GA, USA, July 12-16,
2008, Companion Material, ACM, pp 1977–1984

27. Howard GD, Bull L, Lanzi PL (2009) Towards continuous actions in continuous space
and time using self-adaptive constructivism in neural XCSF. In: GECCO ’09: Pro-
ceedings of the 11th Annual conference on Genetic and evolutionary computation,
ACM, New York, NY, USA, pp 1219–1226, DOI http://doi.acm.org/10.1145/1569901.
1570065

28. Hurst J, Bull L (2006) A neural learning classifier systemwith self-adaptive construc-
tivism for mobile robot control. Artificial Life 12(3):353–380

29. Hurst J, Bull L, Melhuish C (2002) TCS learning classifiersystem controller on a real
robot. Lecture Notes in Computer Science 2439:588–600

30. Kistler WM (2002) Spike-timing dependent synaptic plasticity: a phe-
nomenological framework. Biological Cybernetics 87(5-6):416–427, URL
http://dx.doi.org/10.1007/s00422-002-0359-5

31. Lanzi P, Loiacono D (2006) Xcsf with neural prediction. In: Yen GG,
Lucas SM, Fogel G, Kendall G, Salomon R, Zhang BT, Coello CAC,
Runarsson TP (eds) Proceedings of the 2006 IEEE Congress on Evolution-
ary Computation, IEEE Press, Vancouver, BC, Canada, pp 2270–2276, URL
http://ieeexplore.ieee.org/servlet/opac?punumber=11108

32. Lanzi PL, Loiacono D, Wilson SW, Goldberg DE (2005) XCS with computed predic-
tion in continuous multistep environments. In: IEEE Congress on Evolutionary Com-
putation, IEEE, pp 2032–2039

33. Lanzi PL, Loiacono D, Wilson SW, Goldberg DE (2006) Classifier prediction based on
tile coding. In: Proceedings of the 8th annual conference onGenetic and evolutionary
computation, ACM, New York, NY, USA, GECCO ’06, pp 1497–1504

34. Maass W (1997) Networks of spiking neurons: the third generation of neural network
models. Neural networks

35. Michel O (2004) WebotsTM: Professional mobile robot simulation. International Jour-
nal of Advanced Robotic Systems 1(1):39–42

36. Moioli RC, Vargas PA, Zuben FJV (2007) Analysing learning classifier systems in re-
active and non-reactive robotic tasks. In: Bacardit J, Bernadó-Mansilla E, Butz MV,
Kovacs T, Llorà X, Takadama K (eds) International Workshopon Learning Classifier
Systems IWLCS, Springer, Lecture Notes in Computer Science, vol 4998, pp 286–305

37. Pipe AG, Carse B (2002) First results from experiments infuzzy classifier system ar-
chitectures for mobile robotics. Lecture Notes in ComputerScience 2439:578–587

38. Preen R, Bull L (2014) Discrete and fuzzy dynamical genetic programming in
the xcsf learning classifier system. Soft Computing 18(1):153–167, DOI 10.1007/
s00500-013-1044-4, URLhttp://dx.doi.org/10.1007/s00500-013-1044-4

39. Quartz SR, Sejnowski TJ (1997) The neural basis of cognitive development: A con-
structivist manifesto. Behavioral and Brain Sciences

40. Rechenberg I (1973) Evolutionsstrategie: optimierungtechnischer systeme nach
prinzipien der biologischen evolution. Frommann-Holzboog

41. Rumelhart D, McClelland J (1986) Parallel Distributed Processing, vol 1 & 2. MIT
Press, Cambridge, MA

42. Schultz W (1998) Predictive reward signal of dopamine neurons. Journal of Neurophys-
iology 80(1):1–27

43. Shouval H, Gavornik J (2011) A single spiking neuron thatcan represent interval
timing: analysis, plasticity and multi-stability. Journal of Computational Neuroscience
30(2):489–499

http://dx.doi.org/10.1007/s00422-002-0359-5
http://ieeexplore.ieee.org/servlet/opac?punumber=11108
http://dx.doi.org/10.1007/s00500-013-1044-4

24 David Howard et al.

44. Stolzmann W (1999) Latent learning in khepera robots with anticipatory classifier sys-
tems. In: Lanzi PL, Stolzmann W, Wilson SW (eds) 2nd International Workshop on
Learning Classifier Systems, Orlando, Florida, USA, pp 290–297

45. Studley M, Bull L (2005) X-TCS: accuracy-based learningclassifier system robotics.
In: IEEE Congress on Evolutionary Computation, IEEE, pp 2099–2106

46. Sutton RS (1996) Generalization in reinforcement learning: Successful examples using
sparse coarse coding. In: Advances in Neural Information Processing Systems 8, MIT
Press, pp 1038–1044

47. Sutton RS, Precup D, Singh S (1999) Between mdps and semi-mdps: a framework for
temporal abstraction in reinforcement learning. Artificial Intelligence 112(1-2):181–
211

48. Watkins C (1989) Learning from delayed rewards. PhD thesis, Cambridge University,
Psychology Dept., Cambridge, UK

49. Webb A, Hart E, Ross P, Lawson A (2003) Controlling a simulated khepera with an XCS
classifier system with memory. In: Banzhaf W, Christaller T,Dittrich P, Kim JT, Ziegler
J (eds) Advances in Artificial Life, 7th European Conference, ECAL 2003, Dortmund,
Germany, September 14-17, 2003, Proceedings, Springer, Lecture Notes in Computer
Science, vol 2801, pp 885–892

50. Wilson SW (2000) Get real! xcs with continuous-valued inputs. In: Learning Classifier
Systems, From Foundations to Applications, LNAI-1813, Springer-Verlag, pp 209–219

51. Wilson SW (2001) Function approximation with a classifier system. In: Spector L,
Goodman ED, Wu A, Langdon WB, Voigt HM, Gen M, Sen S, Dorigo M, Pezeshk
S, Garzon MH, Burke E (eds) Proceedings of the Genetic and Evolutionary Computa-
tion Conference (GECCO-2001), Morgan Kaufmann, San Francisco, California, USA,
pp 974–981

52. Wilson SW (2001) Mining oblique data with XCS. In: Lanzi PL, Stolzmann W, Wilson
SW (eds) Advances in learning classifier systems, third international workshop, IWLCS
2000, LNCS, vol 1996, Springer, pp 158–176

	1 Introduction
	2 Background Research
	3 Implementation
	4 Experimentation
	5 Conclusions and Outlook

