3,627 research outputs found

    Prominence of delta oscillatory rhythms in the motor cortex and their relevance for auditory and speech perception

    Get PDF
    In the motor cortex, beta oscillations (∼12-30 Hz) are generally considered a principal rhythm contributing to movement planning and execution. Beta oscillations cohabit and dynamically interact with slow delta oscillations (0.5-4 Hz), but the role of delta oscillations and the subordinate relationship between these rhythms in the perception-action loop remains unclear. Here, we review evidence that motor delta oscillations shape the dynamics of motor behaviors and sensorimotor processes, in particular during auditory perception. We describe the functional coupling between delta and beta oscillations in the motor cortex during spontaneous and planned motor acts. In an active sensing framework, perception is strongly shaped by motor activity, in particular in the delta band, which imposes temporal constraints on the sampling of sensory information. By encoding temporal contextual information, delta oscillations modulate auditory processing and impact behavioral outcomes. Finally, we consider the contribution of motor delta oscillations in the perceptual analysis of speech signals, providing a contextual temporal frame to optimize the parsing and processing of slow linguistic information

    Clinical trials for cerebellar ataxia

    Get PDF

    Altered brain energetics induces mitochondrial fission arrest in Alzheimer's Disease.

    Get PDF
    Altered brain metabolism is associated with progression of Alzheimer's Disease (AD). Mitochondria respond to bioenergetic changes by continuous fission and fusion. To account for three dimensional architecture of the brain tissue and organelles, we applied 3-dimensional electron microscopy (3D EM) reconstruction to visualize mitochondrial structure in the brain tissue from patients and mouse models of AD. We identified a previously unknown mitochondrial fission arrest phenotype that results in elongated interconnected organelles, "mitochondria-on-a-string" (MOAS). Our data suggest that MOAS formation may occur at the final stages of fission process and was not associated with altered translocation of activated dynamin related protein 1 (Drp1) to mitochondria but with reduced GTPase activity. Since MOAS formation was also observed in the brain tissue of wild-type mice in response to hypoxia or during chronological aging, fission arrest may represent fundamental compensatory adaptation to bioenergetic stress providing protection against mitophagy that may preserve residual mitochondrial function. The discovery of novel mitochondrial phenotype that occurs in the brain tissue in response to energetic stress accurately detected only using 3D EM reconstruction argues for a major role of mitochondrial dynamics in regulating neuronal survival

    Hemodynamic and ADH responses to central blood volume shifts in cardiac-denervated humans

    Get PDF
    Hemodynamic responses and antidiuretic hormone (ADH) were measured during body position changes designed to induce blood volume shifts in ten cardiac transplant recipients to assess the contribution of cardiac and vascular volume receptors in the control of ADH secretion. Each subject underwent 15 min of a control period in the seated posture, then assumed a lying posture for 30 min at 6 deg head down tilt (HDT) followed by 20 min of seated recovery. Venous blood samples and cardiac dimensions (echocardiography) were taken at 0 and 15 min before HDT, 5, 15, and 30 min of HDT, and 5, 15, and 30 min of seated recovery. Blood samples were analyzed for hematocrit, plasma osmolality, plasma renin activity (PRA), and ADH. Resting plasma volume (PV) was measured by Evans blue dye and percent changes in PV during posture changes were calculated from changes in hematocrit. Heart rate (HR) and blood pressure (BP) were recorded every 2 min. Results indicate that cardiac volume receptors are not the only mechanism for the control of ADH release during acute blood volume shifts in man

    Differential contributions of synaptic and intrinsic inhibitory currents to speech segmentation via flexible phase-locking in neural oscillators

    Get PDF
    Now published in PLOS Computational Biology doi: 10.1371/journal.pcbi.1008783.Current hypotheses suggest that speech segmentation – the initial division and grouping of the speech stream into candidate phrases, syllables, and phonemes for further linguistic processing – is executed by a hierarchy of oscillators in auditory cortex. Theta (~3-12 Hz) rhythms play a key role by phase-locking to recurring acoustic features marking syllable boundaries. Reliable synchronization to quasi-rhythmic inputs, whose variable frequency can dip below cortical theta frequencies (down to ~1 Hz), requires “flexible” theta oscillators whose underlying neuronal mechanisms remain unknown. Using biophysical computational models, we found that the flexibility of phase-locking in neural oscillators depended on the types of hyperpolarizing currents that paced them. Simulated cortical theta oscillators flexibly phase-locked to slow inputs when these inputs caused both (i) spiking and (ii) the subsequent buildup of outward current sufficient to delay further spiking until the next input. The greatest flexibility in phase-locking arose from a synergistic interaction between intrinsic currents that was not replicated by synaptic currents at similar timescales. Flexibility in phase-locking enabled improved entrainment to speech input, optimal at mid-vocalic channels, which in turn supported syllabic-timescale segmentation through identification of vocalic nuclei. Our results suggest that synaptic and intrinsic inhibition contribute to frequency-restricted and -flexible phase-locking in neural oscillators, respectively. Their differential deployment may enable neural oscillators to play diverse roles, from reliable internal clocking to adaptive segmentation of quasi-regular sensory inputs like speech. Author summary: Oscillatory activity in auditory cortex is believed to play an important role in auditory and speech processing. One suggested function of these rhythms is to divide the speech stream into candidate phonemes, syllables, words, and phrases, to be matched with learned linguistic templates. This requires brain rhythms to flexibly synchronize with regular acoustic features of the speech stream. How neuronal circuits implement this task remains unknown. In this study, we explored the contribution of inhibitory currents to flexible phase-locking in neuronal theta oscillators, believed to perform initial syllabic segmentation. We found that a combination of specific intrinsic inhibitory currents at multiple timescales, present in a large class of cortical neurons, enabled exceptionally flexible phase-locking, which could be used to precisely segment speech by identifying vowels at mid-syllable. This suggests that the cells exhibiting these currents are a key component in the brain’s auditory and speech processing architecture.https://journals.plos.org/ploscompbiol/article/peerReview?id=10.1371/journal.pcbi.100878

    Differential contributions of synaptic and intrinsic inhibitory currents to speech segmentation via flexible phase-locking in neural oscillators

    Get PDF
    Current hypotheses suggest that speech segmentation-the initial division and grouping of the speech stream into candidate phrases, syllables, and phonemes for further linguistic processing-is executed by a hierarchy of oscillators in auditory cortex. Theta (∼3-12 Hz) rhythms play a key role by phase-locking to recurring acoustic features marking syllable boundaries. Reliable synchronization to quasi-rhythmic inputs, whose variable frequency can dip below cortical theta frequencies (down to ∼1 Hz), requires "flexible" theta oscillators whose underlying neuronal mechanisms remain unknown. Using biophysical computational models, we found that the flexibility of phase-locking in neural oscillators depended on the types of hyperpolarizing currents that paced them. Simulated cortical theta oscillators flexibly phase-locked to slow inputs when these inputs caused both (i) spiking and (ii) the subsequent buildup of outward current sufficient to delay further spiking until the next input. The greatest flexibility in phase-locking arose from a synergistic interaction between intrinsic currents that was not replicated by synaptic currents at similar timescales. Flexibility in phase-locking enabled improved entrainment to speech input, optimal at mid-vocalic channels, which in turn supported syllabic-timescale segmentation through identification of vocalic nuclei. Our results suggest that synaptic and intrinsic inhibition contribute to frequency-restricted and -flexible phase-locking in neural oscillators, respectively. Their differential deployment may enable neural oscillators to play diverse roles, from reliable internal clocking to adaptive segmentation of quasi-regular sensory inputs like speech.Wellcome Trust; P50 MH109429 - NIMH NIH HHS; R01 MH111439 - NIMH NIH HHS; 098353 - Wellcome TrustPublished versio

    The Effects of 11 Yr of CO2 Enrichment on Roots in a Florida Scrub-Oak Ecosystem

    Get PDF
    Uncertainty surrounds belowground plant responses to rising atmospheric CO2 because roots are difficult to measure, requiring frequent monitoring as a result of fine root dynamics and long-term monitoring as a result of sensitivity to resource availability. We report belowground plant responses of a scrub-oak ecosystem in Florida exposed to 11yr of elevated atmospheric CO2 using open-top chambers. We measured fine root production, turnover and biomass using minirhizotrons, coarse root biomass using ground-penetrating radar and total root biomass using soil cores. Total root biomass was greater in elevated than in ambient plots, and the absolute difference was larger than the difference aboveground. Fine root biomass fluctuated by more than a factor of two, with no unidirectional temporal trend, whereas leaf biomass accumulated monotonically. Strong increases in fine root biomass with elevated CO2 occurred after fire and hurricane disturbance. Leaf biomass also exhibited stronger responses following hurricanes. Responses after fire and hurricanes suggest that disturbance promotes the growth responses of plants to elevated CO2. Increased resource availability associated with disturbance (nutrients, water, space) may facilitate greater responses of roots to elevated CO2. The disappearance of responses in fine roots suggests limits on the capacity of root systems to respond to CO2 enrichment

    Responsible, Inclusive Innovation and the Nano-divide

    Get PDF
    Policy makers from around the world are trying to emulate successful innovation systems in order to support economic growth. At the same time, innovation governance systems are being put in place to ensure a better integration of stakeholder views into the research and development process. In Europe, one of the most prominent and newly emerging governance frameworks is called Responsible Research and Innovation (RRI). This article aims to substantiate the following points: (1) The concept of RRI and the concept of justice can be used to derive similar ethical positions on the nano-divide. (2) Given the ambitious policy aims of RRI (e.g. economic competitiveness enhancer), the concept may be better suited to push for ethical outcomes on access to nanotechnology and its products rather than debates based on justice issues alone. It may thus serve as a mediator concept between those who push solely for competitiveness considerations and those who push solely for justice considerations in nano-technology debates. (3) The descriptive, non-normative Systems of Innovation approaches (see below) should be linked into RRI debates to provide more evidence on whether the approach advocated to achieve responsible and ethical governance of research and innovation (R&I) can indeed deliver on competitiveness (in nano-technology and other fields)

    Populated and Remote Reefs Spanning Multiple Archipelagos Across the Central and Western Pacific

    Get PDF
    Comparable information on the status of natural resources across large geographic and human impact scales provides invaluable context to ecosystem-based management and insights into processes driving differences among areas. Data on fish assemblages at 39 US flag coral reef-areas distributed across the Pacific are presented. Total reef fish biomass varied by more than an order of magnitude: lowest at densely-populated islands and highest on reefs distant from human populations. Remote reefs (<50 people within 100 km) averaged ∼4 times the biomass of "all fishes" and 15 times the biomass of piscivores compared to reefs near populated areas. Greatest within-archipelagic differences were found in Hawaiian and Mariana Archipelagos, where differences were consistent with, but likely not exclusively driven by, higher fishing pressure around populated areas. Results highlight the importance of the extremely remote reefs now contained within the system of Pacific Marine National Monuments as ecological reference areas
    corecore