343 research outputs found
You Cheated, You Lied: The Safe Harbor Agreement and its Enforcement by the Federal Trade Commission
Book Reviews
The article contains reviews and notation of the following books: Hannibal Hamlin of Maine, Lincoln\u27s First Vice President by H. Draper Hunt; Two Decades of Organized Labor and Labor Politics in Maine, 1880-1900 by Charles A. Scontras; The Senator from Maine: Margaret Chase Smith by Alice Fleming; Canada Preserved: The Journal of Captain Thomas Ainslie by Sheldon S. Cohen; Aids to the Teaching of Maine in the Public Schools by Elizabeth Ring; An Illustrated History of Bangor, Maine by James B. Vickery; History of Parkman: Mainstream Democracy in Parkman, Maine 1794-1969 by Roger C. Storms; Camden-Rockport Bicentennial: 1769-1969; Maine: A Guide to the Vacation State by Ray Bears
Crystal structure determination as part of an ongoing undergraduate organic laboratory project: 5-[(<i>E</i>)-styryl]-1,3,4-oxathiazol-2-one
Published versionThe title compound, C10H7NO2S, provides the first structure of an α-alkenyl oxathiazolone ring. The phenyl ring and the oxa­thia­zolone groups make dihedral angles of 0.3 (3) and −2.8 (3)°, respectively, with the plane of the central alkene group; the dihedral angle between the rings is 2.68 (8)°. A careful consideration of bond lengths provides insight into the electronic structure and reactivity of the title compound. In the crystal, extended Π-stacking is observed parallel to the a-axis direction, consisting of cofacial head-to-tail dimeric units [centroid–centroid distance of 3.6191 (11) Å]. These dimeric units are separated by a slightly longer centroid–centroid distance of 3.8383 (12) Å, generating infinite stacks of mol­ecules
Recommended from our members
MESSENGER Detection of Electron-Induced X-Ray Fluorescence from Mercury's surface
The X-Ray Spectrometer (XRS) on the MESSENGER spacecraft measures elemental abundances on the surface of Mercury by detecting fluorescent X-ray emissions induced on the planet's surface by the incident solar X-ray flux. The XRS began orbital observations on 23 March 2011 and has observed X-ray fluorescence (XRF) from the surface of the planet whenever a sunlit portion of Mercury has been within the XRS field of view. Solar flares are generally required to provide sufficient signal to detect elements that fluoresce at energies above ∼2 keV, but XRF up to the calcium line (3.69 keV) has been detected from Mercury's surface at times when the XRS field of view included only unlit portions of the planet. Many such events have been detected and are identified as electron-induced X-ray emission produced by the interaction of ∼1-10 keV electrons with Mercury's surface. Electrons in this energy range were detected by the XRS during the three Mercury flybys and have also been observed regularly in orbit about Mercury. Knowledge of the energy spectrum of the electrons precipitating at the planet's surface makes it possible to infer surface composition from the measured fluorescent spectra, providing additional measurement opportunities for the XRS. Abundance results for Mg, Al, and Si are in good agreement with those derived from solar-induced XRF data, providing independent validation of the analysis methodologies. Derived S and Ca abundances are somewhat higher than derived from the solar-induced fluorescence data, possibly reflecting incomplete knowledge of the energy spectra of electrons impacting the planet
Work functions, ionization potentials, and in-between: Scaling relations based on the image charge model
We revisit a model in which the ionization energy of a metal particle is
associated with the work done by the image charge force in moving the electron
from infinity to a small cut-off distance just outside the surface. We show
that this model can be compactly, and productively, employed to study the size
dependence of electron removal energies over the range encompassing bulk
surfaces, finite clusters, and individual atoms. It accounts in a
straightforward manner for the empirically known correlation between the atomic
ionization potential (IP) and the metal work function (WF), IP/WF2. We
formulate simple expressions for the model parameters, requiring only a single
property (the atomic polarizability or the nearest neighbor distance) as input.
Without any additional adjustable parameters, the model yields both the IP and
the WF within 10% for all metallic elements, as well as matches the size
evolution of the ionization potentials of finite metal clusters for a large
fraction of the experimental data. The parametrization takes advantage of a
remarkably constant numerical correlation between the nearest-neighbor distance
in a crystal, the cube root of the atomic polarizability, and the image force
cutoff length. The paper also includes an analytical derivation of the relation
of the outer radius of a cluster of close-packed spheres to its geometric
structure.Comment: Original submission: 8 pages with 7 figures incorporated in the text.
Revised submission (added one more paragraph about alloy work functions): 18
double spaced pages + 8 separate figures. Accepted for publication in PR
Short-term variability of biomarkers of proteinase activity in patients with emphysema associated with type Z alpha-1-antitrypsin deficiency
BACKGROUND: The burden of proteinases from inflammatory cells in the lung of subjects with type Pi ZZ of alpha-1-antitrypsin deficiency is higher than in those without the deficiency. Cross-sectional studies have shown increased levels of biomarkers of extracellular matrix degradation in vivo. Longitudinal variability of these biomarkers is unknown but desirable for clinical studies with proteinase inhibitors. METHODS: We measured three different types of biomarkers, including desmosines, elastase-formed fibrinogen fragments and heparan sulfate epitope JM403, in plasma and urine for a period of 7 weeks in a group of 12 patients who participated in a placebo-controlled study to assess the safety of a single inhalation of hyaluronic acid. RESULTS: Effect of study medication on any of the biomarkers was not seen. Baseline desmosines in plasma and urine correlated with baseline CO diffusion capacity (R = 0.81, p = 0.01 and R = 0.65, p = 0.05). Mean coefficient of variation within patients (CVi) for plasma and urine desmosines was 18.7 to 13.5%, respectively. Change in urinary desmosine levels correlated significantly with change in plasma desmosine levels (R = 0.84, p < 0.01). Mean CVi for fibrinogen fragments in plasma was 20.5% and for JM403 in urine was 27.8%. No correlations were found between fibrinogen fragments or JM403 epitope and desmosines. CONCLUSION: We found acceptable variability in our study parameters, indicating the feasibility of their use in an evaluation of biochemical efficacy of alpha-1-antitrypsin augmentation therapy in Pi Z subjects
ARTEMIS Science Objectives
NASA's two spacecraft ARTEMIS mission will address both heliospheric and planetary research questions, first while in orbit about the Earth with the Moon and subsequently while in orbit about the Moon. Heliospheric topics include the structure of the Earth's magnetotail; reconnection, particle acceleration, and turbulence in the Earth's magnetosphere, at the bow shock, and in the solar wind; and the formation and structure of the lunar wake. Planetary topics include the lunar exosphere and its relationship to the composition of the lunar surface, the effects of electric fields on dust in the exosphere, internal structure of the Moon, and the lunar crustal magnetic field. This paper describes the expected contributions of ARTEMIS to these baseline scientific objectives
The effect of a warm electron beam on slow electron-acoustic solitons
The effects of the inclusion of finite drift speed of a warm electron component on the existence of arbitrary amplitude slow electron-acoustic solitons are investigated in a model with ions and cool, warm, and hot electrons. All plasma species are treated as adiabatic fluids. For fixed densities of the cool, warm, and hot electrons, the admissible Mach number ranges of the supported negative potential solitons are found to widen with increasing warm electron beam speed, up to a maximum value of vdbwo = 0.7. Beyond this maximum value, the soliton Mach number ranges become narrower and vanish completely at vdbwo = 1.084 where a switch to positive polarity solitons occurs. For a fixed value of the drift speed of the warm electrons, the cool electron density value at which the switch to positive polarity soliton occurs is the lowest when there is no streaming of the warm electrons but increases with increasing drift speed
- …