215 research outputs found

    A Combination of the Immunotherapeutic Drug Anti-Programmed Death 1 with Lenalidomide Enhances Specific T Cell Immune Responses against Acute Myeloid Leukemia Cells

    Get PDF
    Immune checkpoint inhibitors can block inhibitory molecules on the surface of T cells, switching them from an exhausted to an active state. One of these inhibitory immune checkpoints, programmed cell death protein 1 (PD-1) is expressed on T cell subpopulations in acute myeloid leukemia (AML). PD-1 expression has been shown to increase with AML progression following allo-haematopoeitic stem cell transplantation, and therapy with hypomethylating agents. We have previously shown that anti-PD-1 can enhance the response of leukemia-associated antigen (LAA)-specific T cells against AML cells as well as leukemic stem and leukemic progenitor cells (LSC/LPCs) ex vivo. In concurrence, blocking of PD-1 with antibodies such as nivolumab has been shown to enhance response rates post-chemotherapy and stem cell transplant. The immune modulating drug lenalidomide has been shown to promote anti-tumour immunity including anti-inflammatory, anti-proliferative, pro-apoptotic and anti-angiogenicity. The effects of lenalidomide are distinct from chemotherapy, hypomethylating agents or kinase inhibitors, making lenalidomide an attractive agent for use in AML and in combination with existing active agents. To determine whether anti-PD-1 (nivolumab) and lenalidomide alone or in combination could enhance LAA-specific T cell immune responses, we used colony-forming immune and ELISpot assays. Combinations of immunother-apeutic approaches are believed to increase antigen-specific immune responses against leukemic cells including LPC/LSCs. In this study we used a combination of LAA-peptides with the immune checkpoint inhibitor anti-PD-1 and lenalidomide to enhance the killing of LSC/LPCs ex vivo. Our data offer a novel insight into how we could improve AML patient responses to treatment in future clinical studies

    Enhanced stimulation of antigen-specific immune responses against nucleophosmin 1 mutated acute myeloid leukaemia by an anti-programmed death 1 antibody

    Get PDF
    Nucleophosmin1 (NPM1) is one of the most commonly mutated genes in AML and is often associated with a favourable prognosis. Immune responses play an increasing role in AML treatment decisions; however, the role of immune checkpoint inhibition is still not clear. To address this, we investigated specific immune responses against NPM1, and three other leukaemia-associated antigens (LAA), PRAME, Wilms' tumour 1 and RHAMM in AML patients. We investigated T cell responses against leukaemic progenitor/stem cells (LPC/LSC) using colony-forming immunoassays and flow cytometry. We examined whether immune checkpoint inhibition with the anti-programmed death 1 antibody increases the immune response against stem cell-like cells, comparing cells from NPM1 mutated and NPM1 wild-type AML patients. We found that the anti-PD-1 antibody, nivolumab, increases LAA stimulated cytotoxic T lymphocytes and the cytotoxic effect against LPC/LSC. The effect was strongest against NPM1mut cells when the immunogenic epitope was derived from the mutated region of NPM1 and these effects were enhanced through the addition of anti-PD-1. The data suggest that patients with NPM1 mutated AML could be treated with the immune checkpoint inhibitor anti-PD-1 and that this treatment combined with NPM1-mutation specific directed immunotherapy could be even more effective for this unique group of patients

    What happens after graft loss? A large, long‐term, single‐center observation

    Get PDF
    The number of patients returning to dialysis after graft failure increases. Surprisingly, little is known about the clinical and immunological outcomes of this cohort. We retrospectively analyzed 254 patients after kidney allograft loss between 1997 and 2017 and report clinical outcomes such as mortality, relisting, retransplantations, transplant nephrectomies, and immunization status. Of the 254 patients, 49% had died 5 years after graft loss, while 27% were relisted, 14% were on dialysis and not relisted, and only 11% were retransplanted 5 years after graft loss. In the complete observational period, 111/254 (43.7%) patients were relisted. Of these, 72.1% of patients were under 55 years of age at time of graft loss and only 13.5% of patients were >= 65 years. Age at graft loss was associated with relisting in a logistic regression analysis. In the complete observational period, 42 patients (16.5%) were retransplanted. Only 4 of those (9.5%) were >= 65 years at time of graft loss. Nephrectomy had no impact on survival, relisting, or development of dnDSA. Patients after allograft loss have a high overall mortality. Immunization contributes to long waiting times. Only a very limited number of patients are retransplanted especially when >= 65 years at time of graft loss

    Pre-clinical studies of bone regeneration with human bone marrow stromal cells and biphasic calcium phosphate

    Get PDF
    Introduction Repair of large bone defects remains a significant clinical challenge. Bone marrow stromal cells (BMSCs), a subset of which is known as bone marrow-derived mesenchymal stem cells, show therapeutic potential for bone regeneration. However, their isolation, expansion and implantation will need to be conducted under good manufacturing practices (GMP) at separate locations. An investigation which mimics this clinical scenario where large bone defects shall be regenerated is required before clinical trials can be initiated. Methods Seven batches of 100 million human ex-vivo expanded BMSCs from five donors were transported fresh in syringes from a GMP facility in Germany to France. BMSCs were mixed with biphasic calcium phosphate (BCP) biomaterial prior to subcutaneous implantation in nude mice. The capacity of BMSCs in unison with BCP to regenerate critical sized cranial bone defects was also evaluated. BMSCs expressing luciferase were used to assess the viability and bio-distribution of implanted cells. In situ hybridization, using the human-specific repetitive Alu sequence, was performed for the identification of human cells in explants. Results Eight weeks after implantation of BMSCs, mineralized bone containing mature bone marrow territories was formed in ectopic sites and in calvaria defects. Significant loss of cell viability was observed by bioluminescence imaging and only 1.5 percent of the initial number of transplanted cells remained after 37 days. After eight weeks, while explants were comprised primarily of host cells, there were also human cells attached along the periphery of BCP and embedded in osteocyte lacunae dispersed throughout the newly formed bone matrix. Conclusions This study demonstrates the safety and efficacy of BMSC/BCP combinations and provides crucial information for the implementation of BMSC therapy for bone regeneration

    CD90 is dispensable for white and beige/brown adipocyte differentiation

    Get PDF
    Brown adipose tissue (BAT) is a thermogenic organ in rodents and humans. In mice, the transplantation of BAT has been successfully used to combat obesity and its comorbidities. While such beneficial properties of BAT are now evident, the developmental and cellular origins of brown, beige, and white adipocytes have remained only poorly understood, especially in humans. We recently discovered that CD90 is highly expressed in stromal cells isolated from human white adipose tissue (WAT) compared to BAT. Here, we studied whether CD90 interferes with brown or white adipogenesis or white adipocyte beiging. We applied flow cytometric sorting of human adipose tissue stromal cells (ASCs), a CRISPR/Cas9 knockout strategy in the human Simpson-Golabi-Behmel syndrome (SGBS) adipocyte model system, as well as a siRNA approach in human approaches supports the hypothesis that CD90 affects brown or white adipogenesis or white adipocyte beiging in humans. Taken together, our findings call the conclusions drawn from previous studies, which claimed a central role of CD90 in adipocyte differentiation, into question

    Early efficacy evaluation of mesenchymal stromal cells (MSC) combined to biomaterials to treat long bone non-unions

    Get PDF
    Background and study aim: Advanced therapy medicinal products (ATMP) frequently lack of clinical data on efficacy to substantiate a future clinical use. This study aims to evaluate the efficacy to heal long bone delayed unions and non-unions, as secondary objective of the EudraCT 2011-005441-13 clinical trial, through clinical and radiological bone consolidation at 3, 6 and 12 months of follow-up, with subgroup analysis of affected bone, gender, tobacco use, and time since the original fracture. Patients and methods: Twenty-eight patients were recruited and surgically treated with autologous bone marrow derived mesenchymal stromal cells expanded under Good Manufacturing Practices, combined to bioceramics in the surgical room before implantation. Mean age was 39 ± 13 years, 57% were males, and mean Body Mass Index 27 ± 7. Thirteen (46%) were active smokers. There were 11 femoral, 4 humeral, and 13 tibial non-unions. Initial fracture occurred at a mean ± SD of 27.9 ± 31.2 months before recruitment. Efficacy results were expressed by clinical consolidation (no or mild pain if values under 30 in VAS scale), and by radiological consolidation with a REBORNE score over 11/16 points (value of or above 0.6875). Means were statistically compared and mixed models for repeated measurements estimated the mean and confidence intervals (95%) of the REBORNE Bone Healing scale. Clinical and radiological consolidation were analyzed in the subgroups with Spearman correlation tests (adjusted by Bonferroni). Results: Clinical consolidation was earlier confirmed, while radiological consolidation at 3 months was 25.0% (7/28 cases), at 6 months 67.8% (19/28 cases), and at 12 months, 92.8% (26/28 cases including the drop-out extrapolation of two failures). Bone biopsies confirmed bone formation surrounding the bioceramic granules. All locations showed similar consolidation, although this was delayed in tibial non-unions. No significant gender difference was found in 12-month consolidation (95% confidence). Higher consolidation scale values were seen in non-smoking patients at 6 (p = 0.012, t-test) and 12 months (p = 0.011, t-test). Longer time elapsed after the initial fracture did not preclude the occurrence of consolidation. Conclusion: Bone consolidation was efficaciously obtained with the studied expanded hBM-MSCs combined to biomaterials, by clinical and radiological evaluation, and confirmed by bone biopsies, with lower consolidation scores in smokers

    Donor HLA-E Status Associates with Disease-Free Survival and Transplant-Related Mortality after Non In Vivo T Cell-Depleted HSCT for Acute Leukemia

    Get PDF
    Previous studies have suggested that HLA-E may have a significant role in the outcome of matched unrelated hematopoietic stem cell transplantation (HSCT), especially for patients with acute leukemia. We used Center for International Blood and Marrow Transplant Research data and samples of 1840 adult patients with acute leukemia and their 10/10 HLA-matched unrelated donors to investigate the impact of HLA-E matching status as well as of donor/recipient (D/R) HLA-E genotype on post-HSCT outcome. Both patients and donors were HLA-E genotyped by next-generation sequencing. All patients received their first transplant in complete remission between 2000 and 2015. Median follow-up time was 90 months. Overall survival, disease-free survival (DFS), transplant-related mortality (TRM), and relapse incidence were primary endpoints with statistical significance set at .01. D/R HLA-E genotype analysis revealed a significant association of donor HLA-E*01:03/01:03 genotype with DFS (hazard ratio [HR] = 1.35, P = .0006) and TRM (HR= 1.41, P = .0058) in patients who received T cell replete (ie, without in vivo T cell depletion) transplants (n = 1297). As for D/R HLA-E matching, we did not identify any significant effect on any of the clinical outcome endpoints. In conclusion, this is the largest study to date reporting an improvement of DFS and TRM after matched unrelated HSCT by avoidance of HLA-E*01:03 homozygous donors in patients transplanted with T cell replete grafts for acute leukemia

    Endothelial damage and dysfunction in acute graft-versus-host disease

    Get PDF
    Clinical studies suggested that endothelial dysfunction and damage could be involved in the development and severity of acute graft-versus-host disease (aGVHD). Accordingly, we found increased percentage of apoptotic Casp3+ blood vessels in duodenal and colonic mucosa biopsies of patients with severe aGVHD. In murine experimental aGVHD, we detected severe microstructural endothelial damage and reduced endothelial pericyte coverage accompanied by reduced expression of endothelial tight junction proteins leading to increased endothelial leakage in aGVHD target organs. During intestinal aGVHD, colonic vasculature structurally changed, reflected by increased vessel branching and vessel diameter. Because recent data demonstrated an association of endothelium-related factors and steroid refractory aGVHD (SR-aGVHD), we analyzed human biopsies and murine tissues from SR-aGVHD. We found extensive tissue damage but low levels of alloreactive T cell infiltration in target organs, providing the rationale for T-cell independent SR-aGVHD treatment strategies. Consequently, we tested the endothelium-protective PDE5 inhibitor sildenafil, which reduced apoptosis and improved metabolic activity of endothelial cells in vitro. Accordingly, sildenafil treatment improved survival and reduced target organ damage during experimental SR-aGVHD. Our results demonstrate extensive damage, structural changes, and dysfunction of the vasculature during aGVHD. Therapeutic intervention by endothelium-protecting agents is an attractive approach for SR-aGVHD complementing current anti-inflammatory treatment options

    Effects of Blood Products on Inflammatory Response in Endothelial Cells In Vitro

    Get PDF
    BACKGROUND: Transfusing blood products may induce inflammatory reactions within the vascular compartment potentially leading to a systemic inflammatory response. Experiments were designed to assess the inflammatory potential of different blood products in an endothelial cell-based in vitro model and to compare baseline levels of potentially activating substances in transfusion products. METHODS: The inflammatory response from pre-activated (endotoxin-stimulated) and non-activated endothelial cells as well as neutrophil endothelial transmigration in response to packed red blood cells (PRBC), platelet concentrates (PC) and fresh frozen plasma (FFP) was determined. Baseline inflammatory mediator and lipid concentrations in blood products were evaluated. RESULTS: Following incubation with all blood products, an increased inflammatory mediator release from endothelial cells was observed. Platelet concentrates, and to a lesser extent also FFP, caused the most pronounced response, which was accentuated in already pre-stimulated endothelial cells. Inflammatory response of endothelial cells as well as blood product-induced migration of neutrophils through the endothelium was in good agreement with the lipid content of the according blood product. CONCLUSION: Within the group of different blood transfusion products both PC and FFP have a high inflammatory potential with regard to activation of endothelial cells. Inflammation upon blood product exposure is strongly accentuated when endothelial cells are pre-injured. High lipid contents in the respective blood products goes along with an accentuated inflammatory reaction from endothelial cells
    corecore