835 research outputs found

    Stratiform Host-Rock Replacement via Self-Sustaining Reactions in a Clastic-Dominated (CD-type) Zn Deposit

    Get PDF
    Stratiform to stratabound replacement of a mixed siliciclastic-carbonate host rock is a defining characteristic of many sediment-hosted base metal deposits. Mineralized rocks in clastic-dominated (CD-type) Zn-Pb ore deposits, which represent our highest value base metal resources, are generally thin (101 m), laterally extensive (103 m), and stratiform to stratabound in fine-grained siltstone and mudstone facies. At the recently discovered Teena CD-type Zn-Pb deposit (Proterozoic Carpentaria province, Australia), the host rock was undergoing burial diagenesis when altered and mineralized by hydrothermal fluids that moved up to 2 km lateral to the fluid input conduit (growth fault) through intraformational intervals. In much of the deposit, carbonate dissolution was an important reaction permeability control, although significant amounts of mineralization also occur in carbonate-free siliciclastic beds. In this study, transmission electron microscopy (TEM) data has been generated on a drill core sample that preserves a sharp reaction front between mineralized and unmineralized domains of the fine-grained siliciclastic compositional end member (carbonate free). Petrographic and mineralogical data provide evidence that oxidized hydrothermal fluids moved through the protolith via reaction permeability that developed from feldspar dissolution. The nature of reactive fluid flow was determined by reactions that took place at the fluid-mineral interface. Pyrite formation during the earliest stage of the hydrothermal paragenesis increased the mineral reactive surface area in the protolith. Acidity was then generated in situ via self-sustaining reactions involving pyrite oxidation, transient Fe sulfate formation, and sphalerite precipitation, which provided positive feedbacks to enhance porosity creation and further fluid infiltration and mineralization. In the absence of carbonate, however, ore fluid pH was buffered by K-feldspar dissolution (~4.5), thereby ensuring sphalerite precipitation was not inhibited under more acidic conditions. All CD-type deposits in the Carpentaria province are hosted by a protolith comprising carbonate, K-feldspar, pyrite, and organic matter; these phases set the boundary conditions for the development of self-sustaining reactions during ore formation. Importantly, these self-sustaining reactions represent a Goldilocks zone for ore formation that is applicable to other sediment-hosted deposits that formed via replacement of mixed siliciclastic-carbonate host rocks (e.g., stratiform Cu)

    Nano- and micro-structures in lunar zircon from Apollo 15 and 16 impactites: implications for age interpretations

    Get PDF
    Meteorite impact processes are ubiquitous on the surfaces of rocky and icy bodies in the Solar System, including the Moon. One of the most common accessory minerals, zircon, when shocked, produces specific micro-structures that may become indicative of the age and shock conditions of these impact processes. To better understand the shock mechanisms in zircon from Apollo 15 and 16 impact breccias, we applied transmission electron microscopy (TEM) and studied nano-structures in eight lunar zircons displaying four different morphologies from breccias 15455, 67915, and 67955. Our observations revealed a range of shock-related features in zircon: (1) planar and non-planar fractures, (2) “columnar” zircon rims around baddeleyite cores, (3) granular textured zircon, in most cases with sub-”m-size inclusions of monoclinic ZrO2 (baddeleyite) and cubic ZrO2 (zirconia), (4) silica-rich glass and metal inclusions of FeS and FeNi present at triple junctions in granular zircon and in baddeleyite, (5) inclusions of rutile in shocked baddeleyite, (6) amorphous domains, (7) recrystallized domains. In many grain aggregates, shock-related micro-structures overprint each other, indicating either different stages of a single impact process or multiple impact events. During shock, some zircons were transformed to diaplectic glass (6), and others (7) were completely decomposed into SiO2 and Zr-oxide, evident from the observed round shapes of cubic zirconia and silica-rich glass filling triple junctions of zircon granules. Despite the highly variable effect on textures and Zr phases, shock-related features show no correlation with relatively homogeneous U–Pb or 207Pb/206Pb ages of zircons. Either the shock events occurred very soon after the solidification or recrystallization of the different Zr phases, or the shock events were too brief to result in noticeable Pb loss during shock metamorphism

    Extensor-coding

    Get PDF
    We devise an algorithm that approximately computes the number of paths of length kk in a given directed graph with nn vertices up to a multiplicative error of 1±Δ1 \pm \varepsilon. Our algorithm runs in time Δ−24k(n+m)poly⁥(k)\varepsilon^{-2} 4^k(n+m) \operatorname{poly}(k). The algorithm is based on associating with each vertex an element in the exterior (or, Grassmann) algebra, called an extensor, and then performing computations in this algebra. This connection to exterior algebra generalizes a number of previous approaches for the longest path problem and is of independent conceptual interest. Using this approach, we also obtain a deterministic 2k⋅poly⁥(n)2^{k}\cdot\operatorname{poly}(n) time algorithm to find a kk-path in a given directed graph that is promised to have few of them. Our results and techniques generalize to the subgraph isomorphism problem when the subgraphs we are looking for have bounded pathwidth. Finally, we also obtain a randomized algorithm to detect kk-multilinear terms in a multivariate polynomial given as a general algebraic circuit. To the best of our knowledge, this was previously only known for algebraic circuits not involving negative constants.Comment: To appear at STOC 2018: Symposium on Theory of Computing, June 23-27, 2018, Los Angeles, CA, US

    NF-ÎșB-inducing kinase regulates selected gene expression in the Nod2 signaling pathway

    Get PDF
    The innate immune system surveys the extra- and intracellular environment for the presence of microbes. Among the intracellular sensors is a protein known as Nod2, a cytosolic protein containing a leucine-rich repeat domain. Nod2 is believed to play a role in determining host responses to invasive bacteria. A key element in upregulating host defense involves activation of the NF-ÎșB pathway. It has been suggested through indirect studies that NF-ÎșB-inducing kinase, or NIK, may be involved in Nod2 signaling. Here we have used macrophages derived from primary explants of bone marrow from wild-type mice and mice that either bear a mutation in NIK, rendering it inactive, or are derived from NIK(−/−) mice, in which the NIK gene has been deleted. We show that NIK binds to Nod2 and mediates induction of specific changes induced by the specific Nod2 activator, muramyl dipeptide, and that the role of NIK occurs in settings where both the Nod2 and TLR4 pathways are activated by their respective agonists. Specifically, we have linked NIK to the induction of the B-cell chemoattractant known as BLC and suggest that this chemokine may play a role in processes initiated by Nod2 activation that lead to improved host defense

    Resolved Spectroscopy of Gravitationally-Lensed Galaxies: Recovering Coherent Velocity Fields in Sub-Luminous z~2-3 Galaxies

    Get PDF
    We present spatially-resolved dynamics for six strongly lensed star-forming galaxies at z=1.7-3.1, each enlarged by a linear magnification factor ~8. Using the Keck laser guide star AO system and the OSIRIS integral field unit spectrograph we resolve kinematic and morphological detail in our sample with an unprecedented fidelity, in some cases achieving spatial resolutions of ~100 pc. With one exception our sources have diameters ranging from 1-7 kpc, star formation rates of 2-40 Msun/yr (uncorrected for extinction) and dynamical masses of 10^(9.7-10.3) Msun. With this exquisite resolution we find that four of the six galaxies display coherent velocity fields consistent with a simple rotating disk model, which can only be recovered with the considerably improved spatial resolution and sampling from the combination of adaptive optics and strong gravitational lensing. Our model fits imply ratios for the systemic to random motion, V sin(i)/sigma, ranging from 0.5-1.3 and Toomre disk parameters Q<1. The large fraction of well-ordered velocity fields in our sample is consistent with data analyzed for larger, more luminous sources at this redshift. Our high resolution data further reveal that all six galaxies contain multiple giant star-forming HII regions whose resolved diameters are in the range 300 pc - 1.0 kpc, consistent with the Jeans length expected in the case of dispersion support. The density of star formation in these regions is ~100 times higher than observed in local spirals; such high values are only seen in the most luminous local starbursts. The global dynamics and demographics of star formation in these HII regions suggest that vigorous star formation is primarily governed by gravitational instability in primitive rotating disks.Comment: 18 pages, 8 figures, submitted to MNRA

    A hyper luminous starburst at z=4.72 magnified by a lensing galaxy pair at z=1.48

    Get PDF
    International audienceWe serendipitously discovered in the Herschel Reference Survey an extremely bright infrared source with S500 ∌ 120 mJy in the line of sight of the Virgo cluster which we name Red Virgo 4 (RV4). Based on IRAM/EMIR and IRAM/NOEMA detections of the CO(5−4), CO(4−3), and [CI] lines, RV4 is located at a redshift of 4.724, yielding a total observed infrared luminosity of 1.1 ± 0.6 × 1014 L⊙. At the position of the Herschel emission, three blobs are detected with the VLA at 10 cm. The CO(5−4) line detection of each blob confirms that they are at the same redshift with the same line width, indicating that they are multiple images of the same source. In Spitzer and deep optical observations, two sources, High-z Lens 1 (HL1) West and HL1 East, are detected at the center of the three VLA/NOEMA blobs. These two sources are placed at z = 1.48 with X-shooter spectra, suggesting that they could be merging and gravitationally lensing the emission of RV4. HL1 is the second most distant lens known to date in strong lensing systems. Constrained by the position of the three VLA/NOEMA blobs, the Einstein radius of the lensing system is 2.2″ ± 0.2 (20 kpc). The high redshift of HL1 and the large Einstein radius are highly unusual for a strong lensing system. In this paper, we present the insterstellar medium properties of the background source RV4. Different estimates of the gas depletion time yield low values suggesting that RV4 is a starburst galaxy. Among all high-z submillimeter galaxies, this source exhibits one of the lowest L[CI] to LIR ratios, 3.2 ± 0.9 × 10−6, suggesting an extremely short gas depletion time of only 14 ± 5 Myr. It also shows a relatively high L[CI] to LCO(4−3) ratio (0.7 ± 0.2) and low LCO(5−4) to LIR ratio (only ∌50% of the value expected for normal galaxies) hinting at low density of gas. Finally, we discuss the short depletion time of RV4. It can be explained by either a very high star formation efficiency, which is difficult to reconcile with major mergers simulations of high-z galaxies, or a rapid decrease of star formation, which would bias the estimate of the depletion time toward an artificially low value

    Development of caecaloids to study host-pathogen interactions: new insights into immunoregulatory functions of Trichuris muris extracellular vesicles in the caecum.

    Get PDF
    The caecum, an intestinal appendage in the junction of the small and large intestines, displays a unique epithelium that serves as an exclusive niche for a range of pathogens including whipworms (Trichuris spp.). While protocols to grow organoids from small intestine (enteroids) and colon (colonoids) exist, the conditions to culture organoids from the caecum have yet to be described. Here, we report methods to grow, differentiate and characterise mouse adult stem cell-derived caecal organoids, termed caecaloids. We compare the cellular composition of caecaloids with that of enteroids, identifying differences in intestinal epithelial cell populations that mimic those found in the caecum and small intestine. The remarkable similarity in the intestinal epithelial cell composition and spatial conformation of caecaloids and their tissue of origin enables their use as an in vitro model to study host interactions with important caecal pathogens. Thus, exploiting this system, we investigated the responses of caecal intestinal epithelial cells to extracellular vesicles secreted/excreted by the intracellular helminth Trichuris muris. Our findings reveal novel immunoregulatory effects of whipworm extracellular vesicles on the caecal epithelium, including the downregulation of responses to nucleic acid recognition and type-I interferon signalling

    A large geometric distortion in the first photointermediate of rhodopsin, determined by double-quantum solid-state NMR

    No full text
    Double-quantum magic-angle-spinning NMR experiments were performed on 11,12-C-13(2)-retinylidene-rhodopsin under illumination at low temperature, in order to characterize torsional angle changes at the C11-C12 photoisomerization site. The sample was illuminated in the NMR rotor at low temperature (similar to 120 K) in order to trap the primary photointermediate, bathorhodopsin. The NMR data are consistent with a strong torsional twist of the HCCH moiety at the isomerization site. Although the HCCH torsional twist was determined to be at least 40A degrees, it was not possible to quantify it more closely. The presence of a strong twist is in agreement with previous Raman observations. The energetic implications of this geometric distortion are discussed

    Thoracic and Lumbar Vertebral Bone Mineral Density Changes in a Natural Occurring Dog Model of Diffuse Idiopathic Skeletal Hyperostosis

    Get PDF
    Ankylosing spinal disorders can be associated with alterations in vertebral bone mineral density (BMD). There is however controversy about vertebral BMD in patients wuse idiopathic skeletal hyperostosis (DISH). DISH in Boxer dogs has been considered a natural occurring disease model for DISH in people. The purpose of this study was to compare vertebral BMD between Boxers with and without DISH. Fifty-nine Boxers with (n=30) or without (n=29) DISH that underwent computed tomography were included. Vertebral BMD was calculated for each thoracic and lumbar vertebra by using an earlier reported and validated protocol. For each vertebral body, a region of interest was drawn on the axial computed tomographic images at three separate locations: immediately inferior to the superior end plate, in the middle of the vertebral body, and superior to the inferior end plate. Values from the three axial slices were averaged to give a mean Hounsfield Unit value for each vertebral body. Univariate statistical analysis was performed to identify factors to be included in a multivariate model. The multivariate model including all dogs demonstrated that vertebral DISH status (Coefficient 24.63; 95% CI 16.07 to 33.19; p <0.001), lumbar vertebrae (Coefficient -17.25; 95% CI -23.42 to -11.09; p < 0.01), and to a lesser extent higher age (Coefficient -0.56; 95% CI -1.07 to -0.05; p = 0.03) were significant predictors for vertebral BMD. When the multivariate model was repeated using only dogs with DISH, vertebral DISH status (Coefficient 20.67; 95% CI, 10.98 to 30.37; p < 0.001) and lumbar anatomical region (Coefficient -38.24; 95% CI, -47.75 to -28.73; p < 0.001) were again predictors for vertebral BMD but age was not. The results of this study indicate that DISH can be associated with decreased vertebral BMD. Further studies are necessary to evaluate the clinical importance and pathophysiology of this finding
    • 

    corecore