2,174 research outputs found

    Measurement of oxidation in plasma Lp(a) in CAPD patients using a novel ELISA

    Get PDF
    Measurement of oxidation in plasma Lp(a) in CAPD patients using a novel ELISA.BackgroundLGE2 is produced by the cyclooxygenase- or free radical-mediated modification of arachidonate and is formed during the oxidation of low density lipoprotein (LDL) with subsequent adduction to lysine residues in apo B. We have developed a sensitive enzyme-linked sandwich immunosorbent assay (ELISA) for detection and measurement of LGE2-protein adducts as an estimate of oxidation of plasma LDL and Lp(a).MethodsThe assay employs rabbit polyclonal antibodies directed against LGE2-protein adducts that form pyrroles, and alkaline phosphatase-conjugated polyclonal antibodies specific for apo B or apo (a). It demonstrates a high degree of specificity, sensitivity and validity.ResultsEpitopes characteristic for LGE2-pyrroles were quantified in patients with end-stage renal disease (ESRD) that had undergone continuous ambulatory peritoneal dialysis (CAPD) and in a gender- and age-matched control population. In addition to finding that both LDL and Lp(a) levels were elevated in CAPD patients, we also found that plasma Lp(a) but not LDL was more oxidized in CAPD patients when compared to corresponding lipoproteins from healthy subjects. Using density gradient ultracentrifugation of plasma samples, we found that modified Lp(a) floats at the same density as total Lp(a).ConclusionsThe results of this study demonstrate that oxidation of plasma Lp(a) is a characteristic of ESRD patients undergoing CAPD. This ELISA may be useful for further investigations on oxidation of lipoproteins in the circulation of specific patient populations

    Community-Driven Methods for Open and Reproducible Software Tools for Analyzing Datasets from Atom Probe Microscopy

    Get PDF
    Atom probe tomography, and related methods, probe the composition and the three-dimensional architecture of materials. The software tools which microscopists use, and how these tools are connected into workflows, make a substantial contribution to the accuracy and precision of such material characterization experiments. Typically, we adapt methods from other communities like mathematics, data science, computational geometry, artificial intelligence, or scientific computing. We also realize that improving on research data management is a challenge when it comes to align with the FAIR data stewardship principles. Faced with this global challenge, we are convinced it is useful to join forces. Here, we report the results and challenges with an inter-laboratory call for developing test cases for several types of atom probe microscopy software tools. The results support why defining detailed recipes of software workflows and sharing these recipes is necessary and rewarding: Open source tools and (meta)data exchange can help to make our day-to-day data processing tasks become more efficient, the training of new users and knowledge transfer become easier, and assist us with automated quantification of uncertainties to gain access to substantiated results

    Mode of Action of the Natural Product Allicin in a Plant Model:Influence on the Cytoskeleton and Subsequent Shift in Auxin Localization

    Get PDF
    Allicin is a defense substance produced by garlic cells when they are injured. It is a redox-active thiosulfinate showing redox-activity with a broad range of dose-dependent antimicrobial and biocidal activity. It is known that allicin efficiently oxidizes thiol-groups, and it has been described as a redox toxin because it alters the redox homeostasis in cells and triggers oxidative stress responses. Allicin can therefore be used as a model substance to investigate the action of thiol-specific prooxidants. In order to learn more about the effect of allicin on plants, we used pure synthetized allicin, and studied the influence of allicin on organelle movement in Tradescantia fluminensis as a cytoskeleton-dependent process. Furthermore, we investigated cytoplasmic streaming in sterile filaments of Tradescantia fluminensis, organelle movement using transgenic Arabidopsis with organelle-specifics GFP-tags, and effects on actin and tubulin in the cytoskeleton using GFP-tagged lines. Tubulin and actin were visualized by GFP-tagging in transgenic lines of Arabidopsis thaliana to visualize the influence of allicin on the cytoskeleton. Since auxin transport depends on recycling and turnover of the PIN protein involving cytoskeletal transport to and from the membrane localization sites, auxin distribution in roots was investigated using of transgenic PIN1–GFP, PIN3–GFP, DR5–GFP and DII–VENUS Arabidopsis reporter lines. Allicin inhibited cytoplasmic streaming in T. fluminensis, organelle movement of peroxi-somesperoxisomes, and the Golgi apparatus in a concentration-dependent manner. It also destroyed the correct root tip distribution of auxin, which probably contributed to the observed inhibition of root growth. These observations of the disruption of cytoskeleton-dependent transport processes in plant cells add a new facet to the mechanism of action of allicin as a redox toxin in cells

    Optimization by thermal cycling

    Full text link
    Thermal cycling is an heuristic optimization algorithm which consists of cyclically heating and quenching by Metropolis and local search procedures, respectively, where the amplitude slowly decreases. In recent years, it has been successfully applied to two combinatorial optimization tasks, the traveling salesman problem and the search for low-energy states of the Coulomb glass. In these cases, the algorithm is far more efficient than usual simulated annealing. In its original form the algorithm was designed only for the case of discrete variables. Its basic ideas are applicable also to a problem with continuous variables, the search for low-energy states of Lennard-Jones clusters.Comment: Submitted to Proceedings of the Workshop "Complexity, Metastability and Nonextensivity", held in Erice 20-26 July 2004. Latex, 7 pages, 3 figure

    The SINS survey of z~2 galaxy kinematics: properties of the giant star forming clumps

    Full text link
    We have studied the properties of giant star forming clumps in five z~2 star-forming disks with deep SINFONI AO spectroscopy at the ESO VLT. The clumps reside in disk regions where the Toomre Q-parameter is below unity, consistent with their being bound and having formed from gravitational instability. Broad H{\alpha}/[NII] line wings demonstrate that the clumps are launching sites of powerful outflows. The inferred outflow rates are comparable to or exceed the star formation rates, in one case by a factor of eight. Typical clumps may lose a fraction of their original gas by feedback in a few hundred million years, allowing them to migrate into the center. The most active clumps may lose much of their mass and disrupt in the disk. The clumps leave a modest imprint on the gas kinematics. Velocity gradients across the clumps are 10-40 km/s/kpc, similar to the galactic rotation gradients. Given beam smearing and clump sizes, these gradients may be consistent with significant rotational support in typical clumps. Extreme clumps may not be rotationally supported; either they are not virialized, or they are predominantly pressure supported. The velocity dispersion is spatially rather constant and increases only weakly with star formation surface density. The large velocity dispersions may be driven by the release of gravitational energy, either at the outer disk/accreting streams interface, and/or by the clump migration within the disk. Spatial variations in the inferred gas phase oxygen abundance are broadly consistent with inside-out growing disks, and/or with inward migration of the clumps.Comment: accepted Astrophys. Journal, February 9, 201

    Single spontaneous photon as a coherent beamsplitter for an atomic matterwave

    Full text link
    In spontaneous emission an atom in an excited state undergoes a transition to the ground state and emits a single photon. Associated with the emission is a change of the atomic momentum due to photon recoil. Photon emission can be modified close to surfaces and in cavities. For an ion, localized in front of a mirror, coherence of the emitted resonance fluorescence has been reported. In free space experiments demonstrated that spontaneous emission destroys motional coherence. Here we report on motional coherence created by a single spontaneous emission event close to a mirror surface. The coherence in the free atomic motion is verified by atom interferometry. The photon can be regarded as a beamsplitter for an atomic matterwave and consequently our experiment extends the original recoiling slit Gedanken experiment by Einstein to the case where the slit is in a robust coherent superposition of the two recoils associated with the two paths of the quanta.Comment: main text: 5 pages, 4 figure; supplementary information: 8 pages, 1 figur

    Circulation first – the time has come to question the sequencing of care in the ABCs of trauma; an American Association for the Surgery of Trauma multicenter trial

    Get PDF
    Background The traditional sequence of trauma care: Airway, Breathing, Circulation (ABC) has been practiced for many years. It became the standard of care despite the lack of scientific evidence. We hypothesized that patients in hypovolemic shock would have comparable outcomes with initiation of bleeding treatment (transfusion) prior to intubation (CAB), compared to those patients treated with the traditional ABC sequence. Methods This study was sponsored by the American Association for the Surgery of Trauma multicenter trials committee. We performed a retrospective analysis of all patients that presented to trauma centers with presumptive hypovolemic shock indicated by pre-hospital or emergency department hypotension and need for intubation from January 1, 2014 to July 1, 2016. Data collected included demographics, timing of intubation, vital signs before and after intubation, timing of the blood transfusion initiation related to intubation, and outcomes. Results From 440 patients that met inclusion criteria, 245 (55.7%) received intravenous blood product resuscitation first (CAB), and 195 (44.3%) were intubated before any resuscitation was started (ABC). There was no difference in ISS, mechanism, or comorbidities. Those intubated prior to receiving transfusion had a lower GCS than those with transfusion initiation prior to intubation (ABC: 4, CAB:9, p = 0.005). Although mortality was high in both groups, there was no statistically significant difference (CAB 47% and ABC 50%). In multivariate analysis, initial SBP and initial GCS were the only independent predictors of death. Conclusion The current study highlights that many trauma centers are already initiating circulation first prior to intubation when treating hypovolemic shock (CAB), even in patients with a low GCS. This practice was not associated with an increased mortality. Further prospective investigation is warranted. Trial registration IRB approval number: HM20006627. Retrospective trial not registered
    • …
    corecore