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Abstract: Allicin is a defense substance produced by garlic cells when they are injured. It is a
redox-active thiosulfinate showing redox-activity with a broad range of dose-dependent antimicro-
bial and biocidal activity. It is known that allicin efficiently oxidizes thiol-groups, and it has been
described as a redox toxin because it alters the redox homeostasis in cells and triggers oxidative
stress responses. Allicin can therefore be used as a model substance to investigate the action of
thiol-specific prooxidants. In order to learn more about the effect of allicin on plants, we used pure
synthetized allicin, and studied the influence of allicin on organelle movement in Tradescantia flumi-
nensis as a cytoskeleton-dependent process. Furthermore, we investigated cytoplasmic streaming in
sterile filaments of Tradescantia fluminensis, organelle movement using transgenic Arabidopsis with
organelle-specifics GFP-tags, and effects on actin and tubulin in the cytoskeleton using GFP-tagged
lines. Tubulin and actin were visualized by GFP-tagging in transgenic lines of Arabidopsis thaliana
to visualize the influence of allicin on the cytoskeleton. Since auxin transport depends on recycling
and turnover of the PIN protein involving cytoskeletal transport to and from the membrane local-
ization sites, auxin distribution in roots was investigated using of transgenic PIN1–GFP, PIN3–GFP,
DR5–GFP and DII–VENUS Arabidopsis reporter lines. Allicin inhibited cytoplasmic streaming
in T. fluminensis, organelle movement of peroxi-somesperoxisomes, and the Golgi apparatus in a
concentration-dependent manner. It also destroyed the correct root tip distribution of auxin, which
probably contributed to the observed inhibition of root growth. These observations of the disruption
of cytoskeleton-dependent transport processes in plant cells add a new facet to the mechanism of
action of allicin as a redox toxin in cells.

Keywords: allicin; redox; tradescantia; arabidopsis; cytoskeleton; auxin; mode of action

1. Introduction

Actin and tubulin are major structural components of the cytoskeleton, and their
polymerization and depolymerization are important, amongst other things, for cytoplasmic
streaming and intracellular trafficking [1]. Soon after the discovery of actin, it was shown
that oxidizing agents not only inhibited the polymerization of globular actin, but also
depolymerized actin filaments [2]. The importance of sulfhydryl groups for protoplasmic
streaming in plant cells was reported in 1964 by Abe [3] who showed the effect of the specific
thiol-trapping reagent p-chloromercuribenzoate in bringing cytoplasmic streaming to a
standstill in the internodal cells of Nitella flexilis, the leaf cells of Elodea densa, the root hair
cells of Hydrocharis morsus ranae, and the stamen hair cells of Tradescantia reflexa. Elements
of the cytoskeleton are known to be highly sensitive to oxidation [4,5], and redox-mediated
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posttranslational modifications of the cytoskeleton affect polymerization [6,7]. The redox
regulation of actin and tubulin dynamics is now a well characterized phenomenon [8–10].

Allicin from garlic is the most prominent sulfur-containing bioactive compound in
freshly damaged garlic tissue [11,12]. It oxidizes thiol-groups in a thiol-disulfide-exchange-
like manner, leading to S-thioallylated adducts [13–17]. Since allicin is a strongly antimi-
crobial compound with a broad-spectrum of activity, it has the potential for application
in agricultural pest control [18–22]. Allicin‘s degradation products, primarily polysul-
fanes, ajoenes, and vinyldithiins, can also show biological activity and can be active as
antimicrobial components. The effect of these sulfur-containing components in allelopathic
interactions with other organisms can be of importance, as is observed in particular for
wild garlic (Allium ursinum L.), to which is attributed the exudation of sulfur-containing
secondary metabolites [23].

In animal cells, it was shown that allicin, which acts as a “redox-toxin” [13], affects
the integrity and function of the cytoskeleton [24]. It was reported that 0.5 µM of allicin
preferentially affected the tubulin cytoskeleton, while the actin cytoskeleton was a minor
target (ibid.). However, at a higher 25 µM concentration of allicin, the actin cytoskeleton
was also reported to be disrupted [25]. Furthermore, 16 cytoskeletal proteins were shown to
be S-thioallylated by 100 µM of allicin in human Jurkat cells within 10 min of exposure [26].

The actin cytoskeleton is of particular importance for the correct polar transport of
auxin in relation to PIN efflux carrier recycling [27–29]. Auxin also exerts an influence
on the regulation of actin turnover [30]. The high redox sensitivity of actin is probably
significant for the observation that auxin transport is related to the state of the total cellular
glutathione pool, which is the most important thiol-based redox buffer of the cell [31]. Thus,
treatment of Arabidopsis thaliana seedlings with buthionine sulphoximine (BSO), a specific
inhibitor of glutathione biosynthesis, led to a clear concentration-dependent inhibition
of root growth and a loss of the auxin efflux carriers PIN1, PIN2, and PIN7, as well as
the consequent destruction of the correct auxin distribution in the root tip (ibid.). This
observation correlates with the finding that mutants in glutathione biosynthesis formed
shortened roots, such as was seen in the weak allele mutants pad2 and cad2 of the Arabidopsis
thaliana GSH1 gene, which had reduced glutathione levels [32]. Mutants of the strong rml1
(root meristemless) allele of GSH1 were almost unable to produce glutathione, could not
maintain the root apical meristem, and consequently could not form a root [33,34].

Due to the need to understand the phytotoxicity of allicin with regard to its possible use
in organic farming, as well as the allelopathic effects of these substances, we are interested
in understanding the molecular causes of the effects of allicin on plants. It has already
been reported that allicin inhibits Arabidopsis thaliana primary and lateral root growth
in a concentration-dependent manner [35,36]. In the work reported here, we analyzed
the effect of allicin, applied as a solution of chemically synthesized pure allicin, on the
cytoskeleton and consequent cytoskeleton-dependent cellular processes like cytoplasmic
streaming, organelle movement, and auxin distribution, which may have led to the root
growth-inhibiting effects of allicin.

2. Materials and Methods
2.1. Plant material and cultivation

Tradescantia fluminensis VELL was cultivated in the greenhouse. For the induction of
flowering, the plants were grown in nutrient-poor soil.

Mutants and different GFP-tagged Arabidopsis thaliana lines used in this study are
listed in Table 1. The plants were grown in solid Hoagland-medium (1 mM CaNO3; 5.1 mM
KNO3; 0.5 mM MgSO4; 0.5 mM MgCl2; 0.13 mM (NH4)H2PO4; 30 µM NH3NO3; 31 µM
NaOH; 22 µM EDTA-Iron-Sodium Salt; 9.7 µM BH3O3; 22 µM FeSO4; 2 µM MnSO4; 0.31 µM
ZnCl2, 0.21 µM CuSO4; 0.14 µM Na2MoO4; 86 nM Co(NO3)2, containing 8 g/L of plant
agar (Duchefa, Haarlem, The Netherlands). After stratification for two days at 4 ◦C, the
seedlings were grown under long day conditions (16 h light, 8 h dark; 22 ◦C) for two days
before treatment.



Appl. Sci. 2022, 12, 11470 3 of 12

Table 1. Mutants and transgenic Arabidopsis thaliana lines used in this study.

Mutant Phenotype Reference

ABD2–GFP GFP-fusion protein with actin binding protein ABD2
allows visualization of actin cytoskeleton [37]

Tubulin–GFP GFP-fusion with beta-tubulin allows visualization of
tubulin cytoskeleton [38]

GFP–PTS Fusion of GFP with peroxisomal targeting sequence
allows visualization of peroxisomes [39]

pad2 weak GSH1 allele, homozygote has ~30% GSH content of
the wild type [40]

axr1-12 No auxin perception [41]

aux1-2 Lack of auxin importer AUX1-2. [41]

DR5–GFP GFP expression dependent on the auxin-responsive
DR5 promoter. [42]

DII–VENUS Degradation of the fluorescent protein depending on the
presence of auxin [43]

2.2. Synthesis of Allicin and Quantification of Allicin

The chemical synthesis of allicin was conducted as described previously [13]. The
purity of the chemically synthesized allicin was >95% (ibid.).

2.3. Measurement of Protoplasmic Streaming

As a measure of the influence of allicin on protoplastic flow, the time was recorded
for cytoplasmic flow to cease following exposure to allicin. For this purpose, individual
sterile flower filaments were plucked off with tweezers and placed under a microscope
as a water preparation. To prevent the specimen from being crushed, the cover glass was
slightly raised by small amounts of plasticine at the corners. Treatment with allicin or
garlic juice was carried out by using a filter paper to draw off the water under the coverslip
and replace it with allicin solutions of the appropriate concentration. In the same way,
the allicin solution was exchanged for distilled water for the regeneration experiments.
Microscopy was carried out at 400× magnification using transmitted light microscopy.
Separate staining was not necessary.

2.4. Confocal Laser Scan Microscopy

For GFP-visualization, a Confocal Laser Scan Microscope (TCS SP1, Leica GmbH,
Wetzlar, Germany) was used with an excitation wavelength of 488 nm and an emission
filter of 500–550 nm. For microscopy, a 63× water immersion objective was used and
processed with ImageJ (http://rsbweb.nih.gov/ij, last accessed on 18 August 2018).

For analysis of the cytoskeleton, two-day-old seedlings were used; the seedlings were
placed on a slide in water or in an allicin solution of the indicated concentration. The
analysis was carried out after 30 min. For the PIN and auxin localization study, seedlings
were placed in Hoagland medium containing a concentration of 2 mM. The seedlings
were incubated for 24 h under short day conditions (22 ◦C, 16 h dark, 8 h light) before
microscopic analysis.

2.5. Growth Assays

Arabidopsis thaliana seeds were surface sterilized with ethanol and spread with a
toothpick onto solid Hoagland medium. Plates were stored at 4 ◦C for two days for strati-
fication before incubation at 22 ◦C for an additional two days under long day conditions
(16 h light/8 h dark). After this time, seedlings were carefully transferred with forceps
to Hoagland medium plates containing allicin at a final concentration of 0.5 mM and fur-

http://rsbweb.nih.gov/ij
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ther incubated under these conditions. Root length was measured at day zero and after
three days.

2.6. Statistics

Statistical analyses were carried out using the program SigmaStat. Data were tested for
statistical significance using a multivariate data analysis (ANOVA) with a significance level
of p < 0.05. The data were first tested for normal distribution to allow for valid application
of the statistical tests.

3. Results and Discussion
3.1. Protoplasmic Streaming in Tradescantia Fluminensis VELL

As a model system for the influence of allicin on the cytoskeleton, we chose the
sterile hyaline filaments from the flower of T. fluminensis (shown in Figure 1A–C). The
time that elapsed until cytoplasmic streaming ceased after exposure to allicin solutions
of various concentrations was considered as a measure of the relative activity of allicin
on the cytoskeleton. Particles carried in the cytoplasmic stream were observed to have
locomotion (Figure 1D,E). Soon after the hyaline filaments of T. fluminensis were exposed,
the flow slowed down and stopped entirely after a certain time, which was dependent on
the allicin concentration. As the concentration of allicin increased, the time required for the
protoplasmic flow to come to a standstill decreased (Figure 1D). While a concentration of
0.5 mM of allicin led to a cessation of protoplasmic flow after approx. 13 min, a treatment
with 4 mM of allicin led to a complete cessation of protoplasmic flow after approx. 2 min
(Figure 1D).
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to a concentration- and time-dependent decrease in protoplasmic flow. The time that elapsed at a
certain concentration of allicin until protoplasmic flow stopped was measured, showing a correlation
between the allicin concentration and the time that elapsed until flow stopped. (E) Movement of
structures in the protoplasmic stream, in this case a fork in cytoplasmic strands, could be used to
measure the protoplasmic streaming.

A further observation for 5, 10, and 30 min after treatment showed that, in the presence
of allicin, no new onset of protoplasmic disturbance was observed.

3.2. The Effect of Allicin on the Protoplasmic Streaming Was Partially Reversible

In the following experiments, it was investigated as to whether the effect of allicin was
reversible by washing out the allicin. Filaments of Tradescantia were treated with allicin
with a final concentration of 0.25 mM. After cytoplasmic flow stopped, the allicin solution
was washed by capillary suction with filter paper that drew in pure water at the coverslip
edge to exchange the bathing solution. After about 12 min, protoplasmic flow began again
in isolated cells, although at a slower rate than before allicin treatment (not shown). Thus,
it can be concluded that the inhibition of protoplasmic flow by allicin can be reversible after
a certain regeneration phase; at a concentration higher than 0.25 mM allicin, this reversal
did not occur even after a long observation period (>30 min).

3.3. Influence of Allicin on the Movement of Peroxisomes in Leaves

Since the movement of organelles, such as peroxisomes, also takes place within the
framework of protoplasmic flow, an Arabidopsis thaliana line was used whose peroxisomes
were tagged with GFP [39]. This made their movement traceable. Leaves of this Arabidopsis
thaliana line were infiltrated by vacuum infiltration, with either water as a control treatment
or an allicin solution of the indicated concentration, and the movement of the organelles was
observed under a confocal laser scanning microscope (Figure 2A,B). While in the control,
it was clearly indicated by observing the curved trail of peroxisome movements between
the arrows that the peroxisomes moved substantially over the 10 min observation period
(Figure 2A), in the sample infiltrated with 4 mM of allicin, movement of the peroxisomes
was not observed (Figure 2B).
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Figure 2. Movement of GFP-labelled peroxisomes in Arabidopsis thaliana treated with either (A) water
as a control or (B) 4 mM allicin. The images show a stack of 20 images each, taken 30 s apart.

3.4. Allicin Inhibits Primary- and Lateral Root Growth and Root Hair Development

The morphology of Arabidopsis thaliana wild type Col-0 seedlings germinated for
two days and exposed to 0.5 mM of allicin was very reminiscent of the morphology of
the rml1 mutant [33]. The roots of wild type Col-0 ceased growing in the presence of
allicin, while the shoot axis appeared to be largely unaffected and developed normally
(Figure 3A). Compared to the untreated control, the roots of plants exposed to allicin
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were generally much shorter and showed no lateral roots or root hairs. The prooxidant
cumene hydroperoxide also led to a similarly shortened root (Figure 3B). Root growth in
the pad2 mutant was also similarly inhibited by allicin and cumene hydroperoxide under
the conditions tested (Figure 3B).
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Figure 3. Allicin inhibited primary root growth and root hair development. Seeds were germinated
for two days on filter paper discs, which were then lifted and transferred to fresh medium containing
allicin (A) or cumene hydroperoxide at the stated concentrations. (B) Wild type Col-0 was compared
to the GSH-deficient pad2 mutant. The scale bars = 1 mm. N = 20, experiment was repeated three
times with similar results. The letters A, B above the respective graph columns indicate statistical
differences as determined by ANOVA analysis.

3.5. Effect of Allicin on Actin- and Tubulin Cytoskeleton in Arabidopsis thaliana

To understand in more detail how allicin affects root development and whether this is
associated with the putative effect on the cytoskeleton that was observed in Tradescantia,
Arabidopsis thaliana lines were used whose actin or tubulin filaments were visualized with
by beta-tubulin–GFP fusion [38] and GFP–actin-binding protein expression [37].

Confocal microscopy of the actin cytoskeleton clearly showed typical filamentous
structures in the root of the untreated control (Figure 4A). After exposure to 2 mM of allicin
for 24 h, the filamentous structures were destroyed; instead, GFP aggregate structures
were visible at the margins of the cells. Allicin thus destroyed the integrity of the actin
cytoskeleton in the roots of Arabidopsis thaliana.
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Figure 4. Effect of 2 mM allicin on the actin and tubulin cytoskeleton after exposure for 24 h. While
controls exposed to water only showed a typical filamentous structure of both the actin and tubulin,
they were completely dissolved after 24 h exposure to allicin. (A) shows the influence of allicin on
the actin cytoskeleton, (B) shows the influence of allicin from the plexus of tubulin in the cell.

In addition to the actin cytoskeleton, the tubulin cytoskeleton was also examined in
an analogous manner. Here, too, the typical filament pattern was seen in the untreated
control; treatment with allicin resulted in the dissolution of these filament structures and
the diffuse fine-particulate distribution of GFP fluorescence, in contrast to the aggregate
formation observed for the actin.

3.6. Effect of Allicin on Auxin Distribution PIN Localization

The cytoskeleton fulfils a wide variety of tasks in the cell and is involved, among other
things, in transport processes in the cell. In order to investigate the influence of cytoskeletal
integrity—here primarily concerning actin—on important cellular transport processes, we
chose the localization of PIN proteins, whose localization is crucial for regulated auxin
transport in tissues. Again, GFP-tagged versions of the proteins, in this case PIN1 and PIN3,
were used to track their localization in vivo. In addition, the expression of the constructs
was under the respective native promoter, so that the localization of the expression could
also be followed at the tissue level.

In the untreated control, the PIN1 showed expression mainly in the region of the
central cylinder (Figure 5A); at the cellular level, the strongest fluorescence was observed
on the basipetal side of the cell. The exposure to allicin with a concentration of 2 mM
led to a complete loss of this clear localization pattern, and GFP fluorescence was weakly
distributed throughout the cell (Figure 5B). This corresponded exactly to the observations
made by Koprivova during treatment with BSO, which suggests that allicin was also active
here via the glutathione pool [31].
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Figure 5. Influence of allicin on the localization of PIN1 and PIN3 proteins and on auxin distribution
in the root tip. (A) While the localization of PIN1 in the control was restricted to the central cylinder,
a diffuse localization of PIN1 is seen in (B) allicin-exposed plants. (C) The localization of PIN3 in
the control is seen in the central cylinder and in the meristematic zone of the root tip, but under
allicin exposure (D) the localization of PIN 3 protein was also diffuse. This was also reflected in
the localization of auxin. In control plants, where GFP expression was under the auxin-responsive
DR5 promoter, a typical distribution of auxin is seen in the root tip, meristematic and quiescent
zone (E), whereas this clear localization was abolished under allicin exposure (F). The detection of
auxin distribution in the root by means of DII–VENUS indicated in a complementary way that no
auxin was present where the fluorescent protein was observed, because auxin led to the degradation
of the protein. Accordingly, in the control (G), fluorescence is seen in the marginal areas of the root,
but not in the meristematic and quiescent zone, whereas under allicin exposure, fluorescence is
observed everywhere in the cells (H). All treated samples were exposed to 2 mM allicin for 24 h.

In contrast to the PIN1, the localization of the PIN3 was also found in the area of
the cortex, but it was more prominent in the area of the root apical meristem. Again,
fluorescence was strongest at the basipetal end of the cell (Figure 5C).

As observed with the PIN1, complete disruption of the PIN localization had also
occurred with PIN3 by treatment with 2 mM of allicin. The GFP signal, which indicated
the localization of the PIN1 protein, was diffusely present at both the cellular and tissue
levels (Figure 5D). These results exactly mirrored the effects of the GSH1 inhibitor buthione
sulfoximine (BSO) on PIN distribution [31]. BSO led to a reduction in cellular GSH levels,
and this mirrored the result of allicin titrating out and oxidizing the GSH pool [13].

3.7. Effect of Allicin on Auxin Distribution

Based on the observation that allicin destroyed the localization of PIN proteins, and
because PIN proteins are essential for the directional transport of auxin, the final aim was to
investigate whether the aberrant localization of auxin occurred after allicin treatment. Two
independent methods based on fluorescent proteins were used to check the localization of
allicin. The DR5–GFP reporter system was based on the fact that auxin induced the activity
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of the DR5 promoter and thus drove GFP expression. GFP fluorescence thus indexed the
presence of auxin.

Untreated Arabidopsis thaliana roots showed a clear localization of auxin around the
quiescent zone of the root apical meristem, in the central cylinder and in the epidermal
layers of the root (Figure 5E). Treatment with allicin resulted in the localization of GFP
fluorescence being restricted to the root apex; auxin-dependent expression of GFP was no
longer found in the quiescent and division zone of the root apex (Figure 5F). This showed
that allicin caused a clear redistribution of auxin localization at the root tip.

As an alternative method to detect the localization of auxin at the tissue level, the
DII–VENUS construct was used, in which a “fast maturing” form of yellow-fluorescent
protein (YFP) was expressed in frame with an IAA protein under the control of a constitutive
promoter. Because IAA proteins are degraded in the presence of auxin, a lack of fluorescence
of the VENUS protein would indicate a high concentration of auxin, whereas a strong
fluorescence of the protein would indicate a low concentration of auxin. The results
obtained by means of DII–VENUS corresponded to the statements we also perceived with
DR5–GFP. While the control showed that auxin was present in the root meristem area, the
distribution was diffuse after allicin exposure (Figure 5G).

3.8. Effect of Allicin on Mutants Impaired in Auxin Homeostasis and Signaling

Because we observed an effect on auxin distribution and PIN localization after allicin
treatment (Figure 5), we investigated the effects of allicin on the auxin transport mutant
aux1-2 and the auxin-resistant mutant axr1-12 in comparison to wild type Col-0. Whereas
the PIN proteins are functional in auxin efflux at the basal cell pole, the AUX1 protein
transports auxin into the cell from the apoplast at the apical pole.

The Col-0 wild type showed that its exposure to 0.5 mM of allicin led to a significantly
shortened root. The aux1-2 mutant root length, which already had a significantly shortened
root in the control compared to the Col-0, was not further affected by the presence of allicin,
i.e., this mutant showed a degree of allicin resistance (Figure 6A) and this suggests that
the root phenotype we observed with allicin may have been dependent upon auxin over-
accumulating to supraoptimal levels and that inhibited root growth. The axr1-12 mutant,
on the other hand, showed no significant change in root length phenotype compared to
the wild type in the control, but treatment with allicin caused the roots to be shortened,
but to a much lesser extent than in the Col-0 control. This suggests that the influence of
allicin on auxin transport was partly responsible for the observation that the roots did not
grow as well under allicin exposure (Figure 6B). Possibly, another auxin receptor could
have partially complemented the phenotype of axr1-12. To test this hypothesis, Col-0 and
axr1-12 mutants were exposed to 20 µM of cytochalasin, which led to disruption of the actin
cytoskeleton. As a control, it was examined whether the solvent DMSO at the concentration
used (1% v/v) would lead to an effect, which was not the case. While the Col-0 wild type
showed significantly shortened roots after treatment with cytochalasin, the axr1-12 mutant
did not, which suggested that it was disruption of the actin cytoskeleton which altered
auxin localization. Accordingly, a mutant that was not an auxin receptor mutant showed
no phenotype in terms of root length upon destruction of the actin cytoskeleton. These
results suggest that the effect allicin has on root development correlates, at least in part,
with its influence on auxin distribution in the root, which are dependent upon allicin’s
effects on the cytoskeleton.
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the respective graph columns indicate statistical differences as determined by ANOVA analysis.

4. Conclusions

The thiosulfinate allicin directly affects the cytoskeleton through its thiol-oxidizing
properties. In the model system Tradescantia fluminensis, it was shown that the protoplasm
flow was stopped. GFP-tagged cytoskeletal components revealed that the direct disruption
of both actin and tubulin filaments also occurred. Since the localization of the phytohor-
mone auxin, which is crucial for root development, is regulated by the orientation of PIN
channels and crucially depends on the functionality of the cytoskeleton, we tested the hy-
pothesis of whether, on the one hand, PIN channels showed an altered localization and, on
the other hand, auxin was localized in an altered manner as a result. Both could be shown
by GFP probes. This resulted in a shortening of the roots due to auxin mislocalization in the
growth zone. Thus, it was clear that oxidative stress in roots led to a shortening of the roots,
which was due to an influence on the cytoskeleton integrity and subsequent mislocalization
of the auxin. This has far reaching environmental relevance, far beyond the study of the
effect of allicin as a model substance.
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