347 research outputs found

    Transfer of a quantum state from a photonic qubit to a gate-defined quantum dot

    Full text link
    Interconnecting well-functioning, scalable stationary qubits and photonic qubits could substantially advance quantum communication applications and serve to link future quantum processors. Here, we present two protocols for transferring the state of a photonic qubit to a single-spin and to a two-spin qubit hosted in gate-defined quantum dots (GDQD). Both protocols are based on using a localized exciton as intermediary between the photonic and the spin qubit. We use effective Hamiltonian models to describe the hybrid systems formed by the the exciton and the GDQDs and apply simple but realistic noise models to analyze the viability of the proposed protocols. Using realistic parameters, we find that the protocols can be completed with a success probability ranging between 85-97%

    Dynamic prediction of pulmonary hypertension in systemic sclerosis using landmark analysis

    Get PDF
    OBJECTIVE: Pulmonary hypertension (PH) is a serious complication of systemic sclerosis (SSc). We explore prediction of short-term risk for PH using serial pulmonary function tests (PFTs) and other disease features. METHODS: Subjects with SSc, disease onset≥10 years prior to data retrieval, available autoantibody specificity and PFTs were included. Mixed effects modelling was used to describe change in PFTs over time. Landmarking was utilized to include serial assessments and stratified Cox proportional hazards regression analysis with landmarks as strata was used to develop the PH prediction models. RESULTS: We analysed 1247 SSc patients, 16.3% male, 35.8% with dcSSc. Anticentromere, anti-topoisomerase and anti-RNA polymerase antibodies were observed in 29.8%, 22.0% and 11.4% respectively and PH developed in 13.6%. Over time diffusing capacity for carbon monoxide (DLco) and carbon monoxide transfer coefficient (Kco) declined in all SSc patients (up to 1.5%/year) but demonstrated much greater annual decline (up to 4.5% and 4.8% respectively) in the 5-7 years preceding PH diagnosis. Comparison between multivariable models including either DLco, Kco or FVC/DLco ratio, demonstrated that both absolute values and change over preceding year in those measurements associate strongly with risk of PH (HR 0.93 and 0.76 for Kco and its change; HR 0.90 and 0.96 for DLco and its change; and HR 1.08 and 2.01 for FVC/DLco ratio and its change; p<0.001 for all). The Kco based model had the greatest discriminating ability (Harrell's C 0.903). CONCLUSION: Our findings strongly support the importance of PFT trends over time in identifying patients at risk of PH. This article is protected by copyright. All rights reserved

    The Herschel view of the dominant mode of galaxy growth from z=4 to the present day

    Get PDF
    We present an analysis of the deepest Herschel images in four major extragalactic fields GOODS-North, GOODS-South, UDS and COSMOS obtained within the GOODS-Herschel and CANDELS-Herschel key programs. The picture provided by 10497 individual far-infrared detections is supplemented by the stacking analysis of a mass-complete sample of 62361 star-forming galaxies from the CANDELS-HST H band-selected catalogs and from two deep ground-based Ks band-selected catalogs in the GOODS-North and the COSMOS-wide fields, in order to obtain one of the most accurate and unbiased understanding to date of the stellar mass growth over the cosmic history. We show, for the first time, that stacking also provides a powerful tool to determine the dispersion of a physical correlation and describe our method called "scatter stacking" that may be easily generalized to other experiments. We demonstrate that galaxies of all masses from z=4 to 0 follow a universal scaling law, the so-called main sequence of star-forming galaxies. We find a universal close-to-linear slope of the logSFR-logM* relation with evidence for a flattening of the main sequence at high masses (log(M*/Msun) > 10.5) that becomes less prominent with increasing redshift and almost vanishes by z~2. This flattening may be due to the parallel stellar growth of quiescent bulges in star-forming galaxies. Within the main sequence, we measure a non varying SFR dispersion of 0.3 dex. The specific SFR (sSFR=SFR/M*) of star-forming galaxies is found to continuously increase from z=0 to 4. Finally we discuss the implications of our findings on the cosmic SFR history and show that more than 2/3 of present-day stars must have formed in a regime dominated by the main sequence mode. As a consequence we conclude that, although omnipresent in the distant Universe, galaxy mergers had little impact in shaping the global star formation history over the last 12.5 Gyr

    Hot Disks And Delayed Bar Formation

    Get PDF
    We present observational evidence for the inhibition of bar formation in dispersion-dominated (dynamically hot) galaxies by studying the relationship between galactic structure and host galaxy kinematics in a sample of 257 galaxies between 0.1 << z \leq 0.84 from the All-Wavelength Extended Groth Strip International Survey (AEGIS) and the Deep Extragalactic Evolutionary Probe 2 (DEEP2) survey. We find that bars are preferentially found in galaxies that are massive and dynamically cold (rotation-dominated) and on the stellar Tully-Fisher relationship, as is the case for barred spirals in the local Universe. The data provide at least one explanation for the steep (×\times3) decline in the overall bar fraction from z=0 to z=0.84 in L^* and brighter disks seen in previous studies. The decline in the bar fraction at high redshift is almost exclusively in the lower mass (10 << log M_{*}(\Msun)<< 11), later-type and bluer galaxies. A proposed explanation for this "downsizing" of the bar formation / stellar structure formation is that the lower mass galaxies may not form bars because they could be dynamically hotter than more massive systems from the increased turbulence of accreting gas, elevated star formation, and/or increased interaction/merger rate at higher redshifts. The evidence presented here provides observational support for this hypothesis. However, the data also show that not every disk galaxy that is massive and cold has a stellar bar, suggesting that mass and dynamic coldness of a disk are necessary but not sufficient conditions for bar formation -- a secondary process, perhaps the interaction history between the dark matter halo and the baryonic matter, may play an important role in bar formation.Comment: In press, ApJ, 13 pages, 5 figures (3 color

    Live lecture versus video podcast in undergraduate medical education: A randomised controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Information technology is finding an increasing role in the training of medical students. We compared information recall and student experience and preference after live lectures and video podcasts in undergraduate medical education.</p> <p>Methods</p> <p>We performed a crossover randomised controlled trial. 100 students were randomised to live lecture or video podcast for one clinical topic. Live lectures were given by the same instructor as the narrator of the video podcasts. The video podcasts comprised Powerpoint™ slides narrated using the same script as the lecture. They were then switched to the other group for a second clinical topic. Knowledge was assessed using multiple choice questions and qualitative information was collected using a questionnaire.</p> <p>Results</p> <p>No significant difference was found on multiple choice questioning immediately after the session. The subjects enjoyed the convenience of the video podcast and the ability to stop, review and repeat it, but found it less engaging as a teaching method. They expressed a clear preference for the live lecture format.</p> <p>Conclusions</p> <p>We suggest that video podcasts are not ready to replace traditional teaching methods, but may have an important role in reinforcing learning and aiding revision.</p

    Chemical genetic strategy identifies histone deacetylase 1 (HDAC1) and HDAC2 as therapeutic targets in sickle cell disease

    Get PDF
    The worldwide burden of sickle cell disease is enormous, with over 200,000 infants born with the disease each year in Africa alone. Induction of fetal hemoglobin is a validated strategy to improve symptoms and complications of this disease. The development of targeted therapies has been limited by the absence of discrete druggable targets. We developed a unique bead-based strategy for the identification of inducers of fetal hemoglobin transcripts in primary human erythroid cells. A small-molecule screen of bioactive compounds identified remarkable class-associated activity among histone deacetylase (HDAC) inhibitors. Using a chemical genetic strategy combining focused libraries of biased chemical probes and reverse genetics by RNA interference, we have identified HDAC1 and HDAC2 as molecular targets mediating fetal hemoglobin induction. Our findings suggest the potential of isoform-selective inhibitors of HDAC1 and HDAC2 for the treatment of sickle cell disease

    Distinct cardiovascular phenotypes are associated with prognosis in systemic sclerosis: a cardiovascular magnetic resonance study

    Get PDF
    AIMS: Cardiovascular involvement in systemic sclerosis (SSc) is heterogeneous and ill-defined. This study aimed to: (i) discover cardiac phenotypes in SSc by cardiovascular magnetic resonance (CMR); (ii) provide a CMR-based algorithm for phenotypic classification; and (iii) examine for associations between phenotypes and mortality. METHODS AND RESULTS: A retrospective, single-centre, observational study of 260 SSc patients who underwent clinically indicated CMR including native myocardial T1 and T2 mapping from 2016 to 2019 was performed. Agglomerative hierarchical clustering using only CMR variables revealed five clusters of SSc patients with shared CMR characteristics: dilated right hearts with right ventricular failure (RVF); biventricular failure dilatation and dysfunction (BVF); and normal function with average cavity (NF-AC), normal function with small cavity (NF-SC), and normal function with large cavity (NF-LC) sizes. Phenotypes did not co-segregate with clinical or antibody classifications. A CMR-based decision tree for phenotype classification was created. Sixty-three (24%) patients died during a median follow-up period of 3.4 years. After adjustment for age and presence of pulmonary hypertension (PH), independent CMR predictors of all-cause mortality were native T1 (P  0.14). Hazard ratios (HR) were statistically significant for RVF (HR = 8.9, P < 0.001), BVF (HR = 5.2, P = 0.006), and NF-LC (HR = 4.9, P = 0.002) groups. The NF-LC group remained significantly predictive of mortality after adjusting for RVEF, native T1, and PH diagnosis (P = 0.0046). CONCLUSION: We identified five CMR-defined cardiac SSc phenotypes that did not co-segregate with clinical data and had distinct outcomes, offering opportunities for a more precision-medicine based management approach

    First-In-Human Study in Cancer Patients Establishing the Feasibility of Oxygen Measurements in Tumors Using Electron Paramagnetic Resonance With the OxyChip

    Get PDF
    Objective: The overall objective of this clinical study was to validate an implantable oxygen sensor, called the ‘OxyChip’, as a clinically feasible technology that would allow individualized tumor-oxygen assessments in cancer patients prior to and during hypoxia-modification interventions such as hyperoxygen breathing. Methods: Patients with any solid tumor at ≤3-cm depth from the skin-surface scheduled to undergo surgical resection (with or without neoadjuvant therapy) were considered eligible for the study. The OxyChip was implanted in the tumor and subsequently removed during standard-of-care surgery. Partial pressure of oxygen (pO2) at the implant location was assessed using electron paramagnetic resonance (EPR) oximetry. Results: Twenty-three cancer patients underwent OxyChip implantation in their tumors. Six patients received neoadjuvant therapy while the OxyChip was implanted. Median implant duration was 30 days (range 4–128 days). Forty-five successful oxygen measurements were made in 15 patients. Baseline pO2 values were variable with overall median 15.7 mmHg (range 0.6–73.1 mmHg); 33% of the values were below 10 mmHg. After hyperoxygenation, the overall median pO2 was 31.8 mmHg (range 1.5–144.6 mmHg). In 83% of the measurements, there was a statistically significant (p ≤ 0.05) response to hyperoxygenation. Conclusions: Measurement of baseline pO2 and response to hyperoxygenation using EPR oximetry with the OxyChip is clinically feasible in a variety of tumor types. Tumor oxygen at baseline differed significantly among patients. Although most tumors responded to a hyperoxygenation intervention, some were non-responders. These data demonstrated the need for individualized assessment of tumor oxygenation in the context of planned hyperoxygenation interventions to optimize clinical outcomes

    A tissue-specific landscape of sense/antisense transcription in the mouse intestine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The intestinal mucosa is characterized by complex metabolic and immunological processes driven highly dynamic gene expression programs. With the advent of next generation sequencing and its utilization for the analysis of the RNA sequence space, the level of detail on the global architecture of the transcriptome reached a new order of magnitude compared to microarrays.</p> <p>Results</p> <p>We report the ultra-deep characterization of the polyadenylated transcriptome in two closely related, yet distinct regions of the mouse intestinal tract (small intestine and colon). We assessed tissue-specific transcriptomal architecture and the presence of novel transcriptionally active regions (nTARs). In the first step, signatures of 20,541 NCBI RefSeq transcripts could be identified in the intestine (74.1% of annotated genes), thereof 16,742 are common in both tissues. Although the majority of reads could be linked to annotated genes, 27,543 nTARs not consistent with current gene annotations in RefSeq or ENSEMBL were identified. By use of a second independent strand-specific RNA-Seq protocol, 20,966 of these nTARs were confirmed, most of them in vicinity of known genes. We further categorized our findings by their relative adjacency to described exonic elements and investigated regional differences of novel transcribed elements in small intestine and colon.</p> <p>Conclusions</p> <p>The current study demonstrates the complexity of an archetypal mammalian intestinal mRNA transcriptome in high resolution and identifies novel transcriptionally active regions at strand-specific, single base resolution. Our analysis for the first time shows a strand-specific comparative picture of nTARs in two tissues and represents a resource for further investigating the transcriptional processes that contribute to tissue identity.</p
    corecore