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First-In-Human Study in Cancer
Patients Establishing the Feasibility
of Oxygen Measurements in Tumors
Using Electron Paramagnetic
Resonance With the OxyChip
Philip E. Schaner1, Benjamin B. Williams1,2, Eunice Y. Chen3, Jason R. Pettus4,
Wilson A. Schreiber2, Maciej M. Kmiec2, Lesley A. Jarvis1, David A. Pastel 2,
Rebecca A. Zuurbier2, Roberta M. DiFlorio-Alexander2, Joseph A. Paydarfar3,
Benoit J. Gosselin3, Richard J. Barth3, Kari M. Rosenkranz3, Sergey V. Petryakov2,
Huagang Hou2, Dan Tse2, Alexandre Pletnev5, Ann Barry Flood2, Victoria A. Wood2,
Kendra A. Hebert2, Robyn E. Mosher2, Eugene Demidenko6, Harold M. Swartz2

and Periannan Kuppusamy1,2,5*

1 Department of Medicine, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, and Dartmouth-
Hitchcock Medical Center, Lebanon, NH, United States, 2 Department of Radiology, Norris Cotton Cancer Center, Geisel School
of Medicine at Dartmouth College, and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States, 3 Department of
Surgery, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, and Dartmouth-Hitchcock Medical
Center, Lebanon, NH, United States, 4 Department of Pathology, Norris Cotton Cancer Center, Geisel School of Medicine at
Dartmouth College, and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States, 5 Department of Chemistry, Norris
Cotton Cancer Center, Geisel School of Medicine at Dartmouth College, and Dartmouth-Hitchcock Medical Center, Lebanon,
NH, United States, 6 Department of Biomedical Data Science, Norris Cotton Cancer Center, Geisel School of Medicine at
Dartmouth College, and Dartmouth-Hitchcock Medical Center, Lebanon, NH, United States

Objective: The overall objective of this clinical study was to validate an implantable
oxygen sensor, called the ‘OxyChip’, as a clinically feasible technology that would allow
individualized tumor-oxygen assessments in cancer patients prior to and during hypoxia-
modification interventions such as hyperoxygen breathing.

Methods: Patients with any solid tumor at ≤3-cm depth from the skin-surface scheduled
to undergo surgical resection (with or without neoadjuvant therapy) were considered
eligible for the study. The OxyChip was implanted in the tumor and subsequently removed
during standard-of-care surgery. Partial pressure of oxygen (pO2) at the implant location
was assessed using electron paramagnetic resonance (EPR) oximetry.

Results: Twenty-three cancer patients underwent OxyChip implantation in their tumors.
Six patients received neoadjuvant therapy while the OxyChip was implanted. Median
implant duration was 30 days (range 4–128 days). Forty-five successful oxygen
measurements were made in 15 patients. Baseline pO2 values were variable with
overall median 15.7 mmHg (range 0.6–73.1 mmHg); 33% of the values were below 10
mmHg. After hyperoxygenation, the overall median pO2 was 31.8 mmHg (range 1.5–
144.6 mmHg). In 83% of the measurements, there was a statistically significant (p ≤ 0.05)
response to hyperoxygenation.
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Conclusions: Measurement of baseline pO2 and response to hyperoxygenation using
EPR oximetry with the OxyChip is clinically feasible in a variety of tumor types. Tumor
oxygen at baseline differed significantly among patients. Although most tumors
responded to a hyperoxygenation intervention, some were non-responders. These data
demonstrated the need for individualized assessment of tumor oxygenation in the context
of planned hyperoxygenation interventions to optimize clinical outcomes.

Keywords: OxyChip, oximetry, EPR, tumor, radiation, chemotherapy, hyperoxygenation

INTRODUCTION

Most solid tumors contain regions of acute and chronic hypoxia
that can negatively impact treatment outcomes in cancer patients
(1–7). The use of the Eppendorf technique and other modalities
has demonstrated that the pre-treatment oxygen levels in solid
tumors are a critical parameter affecting clinical outcomes,
particularly using radiation therapy, as hypoxia causes
resistance to treatment (1–6). Evidence of poor outcomes for
hypoxic tumors is particularly strong for squamous cell
carcinomas of both the head and neck (8–14) and cervix (15,
16). The results from the ARCON (accelerated radiotherapy
combined with carbogen and nicotinamide) trial in head-and-
neck cancer (17) emphasize in particular the need for a
stratification of this patient population with respect to tumor
hypoxia in order to optimize treatment outcomes. In a subset of
patients who participated in a translational side study, a
histologic marker of hypoxia (pimonidazole) was used to
analyze biopsy specimens. This subset analysis revealed that
ARCON improved both regional control and disease-free
survival in the group of patients with hypoxic tumors, while
the group of patients whose tumors did not have hypoxia (as
defined by localization of pimonidazole) did not benefit from the
ARCON protocol. These data emphasize the need for
individualized oxygen-based stratification of patients to
evaluate the efficacy of hyperoxygenation interventions to
enhance therapeutic outcomes (17). Therefore, it is highly
desirable to monitor oxygen levels in tumors before, during,
and after therapeutic interventions. This would require the
availability of a means to make reliable, repeated, and direct
measurements of oxygen levels in tissue at specific anatomical
locations—a capability that presently is not available in the clinic.
Consequently, interventions to address tumor hypoxia have not
been widely integrated into the standard of care (SOC) practice
of clinical radiotherapy, nor into any other cancer treatments
that might benefit from such interventions.

While there are several clinically viable techniques that can
directly assess tumor hypoxia including polarographic
electrodes, fluorescence-quenching, and direct injection of
oxygen-sensitive NMR probes based on fluorine (18–22), these
techniques have the disadvantage of not being able to be used
repeatedly or routinely (23). BOLD MRI, proton NMR
spectroscopy, DWI MRI, duplex Doppler ultrasound, PET
based on metabolism of hypoxia-localizing drugs (24–26), and

near-infrared (NIR) measurements of hemoglobin are widely
available non-invasive techniques that assess tissue oxygenation.
However, these methods provide data on parameters that, while
related to tissue oxygen, do not directly measure oxygen in the
tumors, and their relationship to tumor oxygen has yet to be
established. In contrast, in vivo EPR oximetry can make clinically
relevant dynamic measurements of tissue oxygen levels with
the unique capability to perform repeated measurements over
time (27–35). EPR oximetry relies on an oxygen-sensing
paramagnetic probe implanted within a tissue of interest to
measure partial pressure of oxygen (pO2) surrounding the
probe. Following implantation of the probe oxygen
measurements are obtained non-invasively by placing a
surface-coil detector over the probe, and pO2 measurements
are then made in real time as often as desired (36).

While initial in vivo EPR oximetry measurements were made
using soluble probes and carbon particulates (37), crystalline
materials such as lithium phthalocyanine (38) or naphthalocyanine
(39) and derivatives (40, 41) are ideally suited for EPR oximetry.
While all of these materials are highly EPR sensitive and measure
tissue oxygen (pO2) directly, the crystalline material has favorable
spectroscopic properties including narrow line shape and high spin
density. The crystals can be easily embedded in biocompatible
polymers to prevent interactions with tissues and ensure their
structural integrity. There is a linear relationship between the EPR
spectral width and the pO2 surrounding the crystalline material;
moreover, measurements of pO2 are particularly sensitive at levels
of hypoxia, which are of greatest clinical significance.

One such oxygen-sensing paramagnetic material is lithium
octa-butoxynaphthalocyanine (LiNc-BuO) crystals (40, 42). An
implantable oxygen probe, called the OxyChip, has been
developed by embedding LiNc-BuO crystals in the oxygen-
permeable polymer polydimethylsiloxane (PDMS) for pO2

measurements (43–47). Embedding the LiNc-BuO in PDMS
shields the crystals from interaction with the biological micro-
environment, thereby preventing biochemical degradation and
breakdown, as well as local and/or systemic interactions.
Embedding can also preserve the localization and quantity of
the crystals once implanted. The probe can be removed, for
example during standard-of-care (SOC) en bloc surgical
resection of the tumor. Here, we report oxygen data from a
first-in-human clinical study on the feasibility of the OxyChip for
individualized tissue-oxygen assessment prior to and during
hypoxia-modification interventions.
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PATIENTS AND METHODS

Patient Eligibility
Patients with solid tumors were recruited and enrolled in the
clinical trial “Oxygen Measurements in Subcutaneous Tumors by
EPR Oximetry Using OxyChip” (NCT02706197). The study was
carried out in accordance with USA and international standards
of Good Clinical Practice - FDA Title 21 part 312 and
International Conference on Harmonization guidelines. The
study protocol (IRB Study 00028499) was approved by the
Institutional Review Board (IRB) at Dartmouth College and
Dartmouth-Hitchcock Medical Center (DHMC). The Food
and Drug Administration (FDA) approved an IDE (G130260)
for use of the OxyChip (see below). All subjects gave written
informed consent in accordance with the Declaration of
Helsinki. Eligibility criteria for patients were: age ≥18-years
old, having the capacity to give informed consent in English,
having a tumor (benign or malignant) >2.5 cm in diameter
(added during a protocol revision), having a tumor at a depth of
≤3 cm from the skin surface, and having a planned surgical
resection of the tumor at least three days after implantation as
part of SOC therapy. Patients were excluded from this study if
they were pregnant, had contraindications for exposure to a
magnetic field, had prior radiotherapy to the site of implantation,
were to receive angiogenesis inhibitors during the study, or had a
platelet blood count of <50,000/µl of blood and an absolute
neutrophil count of <1,000/µl of blood. An initial cohort of six
patients who received surgery alone after OxyChip implantation
was evaluated for safety and toxicity endpoints. After this
evaluation demonstrated no significant safety or toxicity
findings, a second cohort was opened, in which patients could
have either chemotherapy or radiotherapy prior to surgical
resection but not both concurrently or consecutively.

In Vivo EPR Oximetry With the OxyChip
In vivo EPR oximetry refers to measuring oxygen in living tissue
by EPR spectroscopy (37). The principle of EPR oximetry is
based on the paramagnetic property of molecular oxygen (O2),
which in its ground state has two unpaired electrons that can
undergo spin-exchange interaction with a paramagnetic EPR
probe (Figure 1A). This process is sensitive to the partial
pressure of oxygen (pO2) at the probe location, with the
relaxation rate of the probe increasing as a function of pO2 in
the tissue adjacent to the probe (37, 48). The OxyChip is an
oxygen-sensing probe containing paramagnetic LiNc-BuO
crystals embedded in PDMS for clinical applications (43–47).
The OxyChips used in this study were of a cylindrical shape,
5 mm in length and 0.6 mm in diameter (Figure 1B). The EPR
spectrum of the OxyChip responds to pO2 in a predictable
manner (Figures 1C, D) and responds quickly (~30 sec) to
changes in pO2 levels (Figure 1E). Each OxyChip used in this
study was verified for its oxygen response (calibration) before
implantation and after removal from patients.

OxyChip Implantation
The OxyChip is classified as a Class III medical device by the
FDA’s Center for Device and Radiological Health. Based on

biological evaluation (ISO 10993-12:2012 guidelines) and
preclinical testing data (36), the FDA granted investigational
device exemption (IDE) status to the OxyChip for a clinical study
to collect safety data associated with the OxyChip and to assess
the feasibility of making pO2 measurements in tumors, especially
in cancer patients (49–51). The OxyChips were steam-sterilized
in a clinical autoclave at gravity cycle (set at 121°C/15 PSIG for
30 minutes) with appropriate biological and chemical indicators
and stored in a sterile environment prior to implantation. The
OxyChip was implanted under sterile conditions by placing it
inside an 18-G brachytherapy needle (Figure 1B) and deploying
it into the tumor under local anesthesia (1% lidocaine) unless the
patient declined the anesthetic (Supp. Figure 1). Ultrasound
image guidance was used to direct needle placement where it was
deemed necessary for definitive placement of the OxyChip in the
tumor. After implantation, patients were evaluated for associated
toxicity by a study physician immediately after OxyChip
placement, during all EPR oximetry measurements, and, if the
patient received chemotherapy or radiotherapy, at all
chemotherapy administration appointments and at least weekly
for those undergoing radiotherapy. Evaluations also occurred
within two weeks of surgical resection of the tumor and patient
records were monitored for potential adverse events until a year
after OxyChip removal. Adverse events were scored using the
Common Terminology Criteria for Adverse Events
(CTCAE) v4.0.

EPR Measurements
EPR oximetry was carried out using a custom-built EPR
scanner (Supp. Figure 2A) operating at 1.15 GHz (52).
Patients were positioned on a gurney within the magnetic
field, and the EPR surface-coil detector was placed over the
site of the implanted OxyChip (Supp. Figure 2B) (53). In some
patients, ultrasound imaging was used to locate the OxyChip
prior to placement of the detector. After detector (resonator)
tuning, and optimization of data-acquisition settings, EPR
scans were made. For each scan, the magnetic field was swept
over the range of the EPR signal and 1024 data points were
collected. The scan period was 5 seconds, and scans were
repeated and typically accumulated for 1 minute (i.e., twelve
5-second scans) under non-saturating RF power (Figure 1F).
Overmodulation was used as needed to improve the signal-to-
noise ratio (SNR). This acquisition process was repeated
throughout the baseline, hyperoxygenation, and recovery
periods. During each measurement session, the patient would
breathe room air, followed by a period of oxygen inhalation
using a non-rebreather mask with 100% oxygen delivered at a
flow rate of 15 liters/minute, and then breathe room air again;
all three measurement periods were carried out for up to ten
minutes (approximately), for an anticipated total of up to 30
minutes (Figure 1G). Not all patients completed all parts of the
measurement protocol due primarily to technical or logistical
considerations (e.g., the OxyChip signal was not detected or
patient time constraints) as opposed to any difficulty tolerating
EPR measurements. Measurement sessions were repeated as
often as the patient was willing and available at the clinic prior
to surgical resection.
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FIGURE 1 | EPR oximetry using OxyChip. Oxygen (pO2) measurements in tumors were made by EPR oximetry using the OxyChip. (A) Illustration of the principle of
EPR oximetry using the OxyChip. (B) Photograph showing an OxyChip along with a brachytherapy needle used for implantation in tumors. (C) EPR spectra of an
OxyChip obtained in vitro in the presence of different oxygen levels (pO2 in mmHg): 0, 7.6, 15.2, and 38 at room temperature. The spectra exhibit oxygen-dependent
broadening. (D) EPR width of the OxyChip measured in the pO2 range 0–76 mmHg at room temperature. The data (mean ± SD; n=5) exhibit a linear response of
EPR width to pO2. (E) Time-response of the OxyChip to changes in pO2 levels obtained in vitro. For all pO2 levels (in mmHg) baseline measurements were obtained
at 0, hyperoxygenation was initiated (gray block: 7.6; 15.2; and 38 mmHg), and then oxygen was discontinued with a return to baseline (0)mmHg. The data indicated
a time-response of about 30 sec to reach equilibrium in each case. (F) Representative EPR spectrum, computer fitting, and estimated EPR spectral width obtained
from the tumor of a patient (20 in Table 1). Superimposed in red is a computer fit used to obtain spectral width, which was converted to pO2 using a calibration
curve (D). (G) Representative pO2 data obtained from a patient (9 in Table 1) during a session of room-air breathing, hyperoxygen breathing (gray block) and return
to room-air breathing.
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Estimation of pO2 Data From EPR Spectra
Median spectra were calculated for each set of consecutive 5-
second EPR scans based on the point-by-point median across
scans (for 1024 points) and computer-fitted to obtain the width
(half-width at half-maximum), which was then converted to pO2

using a width-vs-pO2 calibration curve established in vitro (i.e.,
Figure 1D). Typically, 12 scans per set were acquired and each
pO2 value corresponds to one minute of EPR data acquisition.
The measurement was considered successful if the median
spectrum showed the characteristic single-component signal
centered at the expected magnetic-field-sweep position
corresponding to the OxyChip signal. Although the EPR
measurements are known to be stable, occasional involuntary
or accidental movement by the patient or resonator would distort
the EPR spectral shape making the fitting results unusable, in
which case it would be excluded from use. The fitting software
models the effects of overmodulation as reported by Robinson
et al. (54, 55) to extract the intrinsic linewidth through curve
fitting of the over-modulated spectra. The baseline pO2 values
reported herein are mean ± SEM (standard error of the mean) of
the pO2 values obtained during the time the patient breathing
room air, before switching to hyperoxygen breathing. The
hyperoxygenation pO2 values reported herein represent the
pO2 values (±SEM) estimated at the end of 10 minutes after
switching to hyperoxygen breathing, regardless of actual
duration of hyperoxygenation. These values were calculated
from a linear fitting of the pO2 values obtained during
hyperoxygen-breathing (Supp. Figure 3). In this way, we could
express the hyperoxygen pO2 data on a uniform timescale. The
details of the pO2 values or dynamics during the recovery period
(back to room-air breathing) have not been analyzed and are not
discussed in this report.

Characterization of Explanted OxyChips
The OxyChips were removed as part of the en bloc tumor
resection during SOC surgery. This information is reported in
detail in a separate report (51). Both gross and microscopic
evaluations of the tissue surrounding the OxyChip were
performed. The integrity of the OxyChip (shape, length), its
placement relative to tumor location, and the distance from the
skin surface were grossly assessed in the pathology laboratory.
The location of the OxyChip relative to the tumor was described
and was identified as outside the tumor if non-tumor cells
surrounded it.

Statistical Analyses
Significant differences between the baseline and hyperoxygen
pO2 values of individual patients were assessed using a two-tailed
unpaired t-test. Significant differences between the group means
of baseline and hyperoxygen pO2 values or between the results of
the pre- and post-implant OxyChips were assessed using a two-
tailed paired t-test. Pearson’s product-moment correlation
coefficient (r) was used to assess two-way linear association
between two continuous variables. Time-variation pO2 data
sets from multiple measurements were fitted using a curve and
estimated by nonlinear least squares using function nls in the R

statistical package. The null hypothesis that the data on these
patients belong to this curve was tested by chi-square. For all
tests, a P value of ≤0.05 was considered statistically significant.
Unless otherwise mentioned, the error bars represent standard
error of the mean (SEM).

RESULTS

Summary of pO2 Measurements
Twenty-three cancer patients with malignant tumors were
enrolled and implanted with the OxyChip (Table 1). The
tumor types included invasive ductal carcinoma (IDC) of the
breast (patients 13–17, 19–21), squamous cell carcinoma (SCC)
of the skin (patients 3,6,7,9–12,22,23), basal cell carcinoma
(BCC, patients 5,24), sarcoma (patient 18), melanoma (patient
2,4), follicular thyroid carcinoma (patient 8). The Table also
includes one patient with a non-malignant tumor (lipoma,
patient 1). EPR measurements were carried out in all 24
patients over 71 visits, which included multiple visits in most
patients—up to 7 visits over a period of up to 123 days post-
implantation. Tumor pO2 values were successfully obtained in 16
patients over 46 visits, including measurement of response to
hyperoxygen interventions in 43 visits. The first patient had a
benign lipoma and therefore the pO2 data from this patient was
not aggregated with that of the other 23 patients who had
histologically documented malignant tumors.

Patient Population, Treatment, and
OxyChip Implantation
The median age of enrolled patients was 61 (range of 23–83).
Women were 46% of the total cohort (n=24), and most patients
had either an IDC of the breast (33%) or SCC of the skin (33%).
Of the 24 patients implanted, definitive surgery alone was
performed in 18 (median implant duration 21 days, range 4–
42 days). Five patients received neoadjuvant chemotherapy
followed by surgical resection (median implant duration 131
days, range 124–138 days); one received neoadjuvant
radiotherapy followed by surgical resection (implant duration
79 days). The median time from OxyChip implantation to
surgical removal for all patients was 29 days (range 4–138
days). Ultrasound image guidance was not used for placement
in twelve patients (Table 1, patients 1–12), initially because the
protocol did not incorporate imaging and later due to physician
discretion relating to the superficiality and size of
implanted malignancies.

OxyChip Retrieval and Assessment of
Implant Location in the Tumor
Pathological analysis was performed on the resected tumors to
assess the OxyChip location. Of the 12 patients implanted
without image guidance who received surgery alone, the
OxyChip was found within the tumor in eight patients
(Table 1, patients 2–5,8,9,11,12) and outside but adjacent to
the tumor in three patients (patients 1,7,10). In one patient
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TABLE 1 | Patient information, OxyChip, and oxygen data.

Patient Age Sex Clinical
Diagnosis

Anatomical
Location of

Tumor

Treatment prior to Surgical
Resection of Tumor (SOC)

OxyChip
Implant
Duration

Location of OxyChip in the
Resected
Tumor

Depth of
OxyChip
in Tumor

Post-implant
Period at pO2

Scan (days)

Baseline
pO2 Mean
±SEM
(mmHg)

Hyperox.
pO2 Mean
±SEM
(mmHg)

Significance,
P*

1 51 F Lipoma Upper left back,
subcutaneous

None 5 days Not within tumor; within superficial
fascia of subcutaneous mass

< 10 mm 2 33.8±2.7 44.6±7.8 0.2369

2 69 F Melanoma Left anterior tibia,
skin

None 4 days Within tumor 3 mm 3 3.5±0.1 7.1±0.3 0.0000

3 61 M SCC skin Left nasal
dorsum, skin

None 32 days Within tumor 3 mm 8 1.4±0.5 1.5±0.5 0.6452
32 0.6±0.1 6.7±2.1 0.0991

4 77 M Melanoma Scalp, skin None 5 days Within tumor 5–10 mm 5 9.3±0.5 5.6±0.7 0.001
5 69 M BCC Left temporal

scalp, skin
None 33 days Within tumor 2–3 mm 14 3.4±0.3 19.2±4.6 0.0255

33 4.6±0.8 9.5±1.5 0.0065
6 63 M SCC skin Scalp, posterior

superior, skin
None Unknown Not found, presumed lost prior to

surgery due to rapidly progressive
tumor necrosis

5 mm 23 NS NM

7 61 M SCC skin Right posterior
triangle neck,
subcutaneous
mass

None 30 days Outside of and adjacent to tumor
within dermis

5 mm 3 33.7±0.1 96±2.9 0.0000
9 15.9±1.4 50.3±2.7 0.0000
21 21.1±2.2 NM
30 18.7±0.4 77.9±2.0 0.0000

8 56 M FTC Thyroid None 47 days Within tumor 25 mm 1,7,14 NS NM
9 72 F SCC skin Frontal scalp, left,

skin
None 7 days Within tumor 5-10 mm 1 6.0±0.2 60.3±10.4 0.0347

4 7.9±0.4 108.5±5.1 0.0000
6 9.6±1.9 127.1±9.4 0.0000

10 70 M SCC skin Infraorbital cheek,
left,
subcutaneous

None 25 days Adjacent to tumor, but not within
tumor; 4 mm from tumor margin

10 mm 1 47.5±1.6 67.0±2.9 0.0001
16 10.5±0.2 16.5±0.7 0.0000

11 78 M SCC skin Right temporal
scalp, skin

None 27 days Within tumor 2 mm 8 13.3±0.7 62.4±5.7 0.0001
22 1.8±1.1 4.4±1.6 0.1835

12 83 M SCC skin Right neck, level
II lymph node

None 22 days Within tumor 5 mm 1 10.4±0.5 6.1±0.0 0.0010
14 2.0±0.7 NM

13 42 F IDC Right breast None 10 days Within tumor 11 mm 3,7,10 NS NM
14 48 F IDC Left breast None 13 days Not within tumor, 1 mm from

tumor edge
6 mm 1 13.3±1.4 64.3±6.2 0.0011

4 16.4±2.4 88.0±12.8 0.0048
6 24.5±1.1 64.5±3.1 0.0000
7 17.6±3.0 56.6±6.7 0.0031

15 70 F IDC Left breast Chemotherapy: paclitaxel /
trasuzumab x 3 cycles

124 days Uncertain relationship to
pretreatment tumor

16 mm 9,15,31 NS NM

16 61 F IDC Left breast Chemotherapy: carboplatin /
docetaxel / trastuzumab /
pertuzumab x 6 cycles

131 days Uncertain relationship to
pretreatment tumor

9.4 mm 16,34,99 NS NM

17 61 F IDC Left breast Chemotherapy: dose dense
adriamycin / cytoxan x 4 cycles

137 days Uncertain relationship to
pretreatment tumor

13 mm 6,20,62,
90,104

NS NM

18 23 M Sarcoma Right chest wall Radiotherapy: 50 Gray 79 days Within collagenous soft tissue
skeletal muscle fascia outside of
viable tumor at least 6 mm

18 mm 6,12,20, 27 NS NM

(Continued)
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TABLE 1 | Continued

Patient Age Sex Clinical
Diagnosis

Anatomical
Location of

Tumor

Treatment prior to Surgical
Resection of Tumor (SOC)

OxyChip
Implant
Duration

Location of OxyChip in the
Resected
Tumor

Depth of
OxyChip
in Tumor

Post-implant
Period at pO2

Scan (days)

Baseline
pO2 Mean
±SEM
(mmHg)

Hyperox.
pO2 Mean
±SEM
(mmHg)

Significance,
P*

19 51 F IDC Right breast Chemotherapy: carboplatin /
docetaxel / trastuzumab /
pertuzumab x 6 cycles

125 days Uncertain relationship to
pretreatment tumor. OxyChip not
seen within small foci of residual
tumor.

6–7 mm 24 12.4±0.5 20.5±1.3 0.0010
45 16.2±1.3 NM
66 28.9±1.3 70.7±6.8 0.0002
87 17.2±1.5 45.4±4.5 0.0006
107 24.3±0.6 33.7±2.5 0.0079

20 55 F IDC Left axillary node Chemotherapy: dose dense
adriamycin / cytoxan x 1 cycle,
transitioned to paclitaxel x 1 cycle

138 days No residual
tumor - uncertain relationship to
pretreatment tumor

5–6 mm 13 36.3±3.7 144.6±19.7 0.0008
30 23±1.2 56.3±2.8 0.0000
58 18.4±1.8 37.1±3.5 0.0037
86 4.4±0.5 10.9±4.5 0.2056
99 21.9±1.0 23.7±2.6 0.4647
112 15.7±1.5 14.9±3.8 0.8359
124 7.6±0.4 11.5±1.3 0.0165

21 81 F IDC Right axillary
node

None 20 days Freely mobile within necrotic nodal
tumor

10 mm 6 2.4±0.3 4.6±0.9 0.0329
7 10.6±2.1 6.5±2.2 0.0080
9 18.9±0.9 8.4±0.9 0.0200
13 12.7±2.1 21.7±2.6 0.0011
15 23.1±2.3 19.7±2.7 0.0786

22 65 M SCC skin Above
manubrium, skin

None 42 days Within lymph
node, adjacent to nest of tumor

12.8 mm 28,30,35 NS NM

23 54 M SCC HN Level II LN, neck None 11 days Within tumor 10.5 mm 7 25.3±1.4 35.0±3.3 0.0188
8 16.0±0.8 29.9±1.2 0.0000
9 3.9±1.6 16.7±4.1 0.0290

24 53 M BCC Face, left, skin None Unknown Not found, presumed lost at time
of surgery

7 mm 5 73.1±4.9 89.0±10.4 0.3360
21 69.9±18.6 80.7±19.8 0.4432

SCC, squamous cell carcinoma; BCC, basal cell carcinoma; FTC, follicular thyroid cancer; IDC, invasive ductal carcinoma; HN, head and neck; LN, lymph node; SOC, standard of care; NS, no signal; NM, not measured; *, two-tailed unpaired
t-test between baseline and hyperoxygenation pO2 values.
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(patient 6), the OxyChip was found neither during EPR
oximetry-measurement attempts nor on pathologic assessment.
It was presumed that the OxyChip was inadvertently dislodged
or fell out soon after implantation prior to initiation of oximetry
measurements. Of the six patients implanted with image
guidance who received surgery alone, the OxyChip was found
within the tumor in three patients (patients 13,21,23) and outside
but adjacent to the tumor in two patients (patients 14,22). In one
patient (patient 24), the OxyChip was presumed to be lost at the
time of surgery. Of the five patients implanted with image
guidance who received chemotherapy, the OxyChips were
within the tumor on initial placement (patients 15–17,19,20);
however, determination of the location of the OxyChip relative
to the tumor at pathological analysis was confounded by post-
treatment effect (i.e., a decrease in the size of or complete
resolution of the tumor due to a partial or complete response
to therapy). In one patient (patient 18) who was implanted with
image guidance and treated with neoadjuvant radiotherapy the
OxyChip was assessed to be within the tumor on initial
placement; however, it was found 6 mm outside viable tumor
at pathologic analysis. Further evaluation of patient-reported
outcomes, adverse events, and pathologic findings associated
with OxyChip implantation have been published separately (51).

OxyChip Measurements in the Short Term
The reliability of the OxyChip for short-term repeated
measurements of pO2 is best illustrated in an untreated SCC
on the left frontal scalp of a 72-year-old female (patient 9) in 3
visits over a period of 6 days. The selection of this cancer patient
assumed that the implant would be within the tumor and that, in
the short term (6 days) and without treatment, the baseline pO2

and its response to hyperoxygenation would not change
significantly. Figures 2A, B shows the tumor on the scalp,
OxyChip implantation, and detector placement during an EPR
measurement. Microscopic examination of the resected tumor
confirmed that the OxyChip was within the tumor, as evident on
gross examination (Figure 2C). The pO2 data obtained during
room-air breathing, hyperoxygen breathing (100% O2) and
return to room-air breathing on days 1, 4, and 6, shown
superimposed in Figure 2D, exhibited a reproducible pattern—
both in trend and magnitude. Non-linear least-squares fitting of
the time variation of pO2 data sets revealed that there were no
significant differences between all three measurements. The
mean baseline and estimated hyperoxygen pO2 values were
similar (Figure 2E).

OxyChip Measurements in the Long Term
The capability of the OxyChip for long-term monitoring of pO2

in tumors is best illustrated in a 55-year-old female with breast
cancer (Table 1, patient 20). She had EPR measurements over 7
visits spanning a period of 124 days while undergoing dose-dense
chemotherapy (doxorubicin/cyclophosphamide followed by
paclitaxel). Figures 2F–H shows the site of implantation in a
left axillary node, OxyChip implantation using ultrasound
guidance, and EPR measurement using the flexible surface-coil
detector (53). Repeated measurements of tumor pO2 and
response to hyperoxygen breathing during the treatment

period showed a progressive decline of baseline pO2 for about
3 months (36.3 ± 3.7 mmHg on day 13 to 4.4 ± 0.5 mmHg on day
86) followed by an increase for a brief period (15.7 ± 1.5 on day
112) and eventually dropping to 7.6 ± 0.4 mmHg on day 124
(Figure 2I). Hyperoxygenation exhibited an increase in pO2 and
followed a similar trend suggesting a strong positive correlation
(r=0.88) between baseline and hyperoxygenation pO2

values (Figure 2J).

Stability of the OxyChip and Oxygen
Sensitivity in Tumors
The stability of the OxyChip for long-term monitoring of pO2 in
a variety of human tumors and implant periods was determined
by comparing the pre- and post-implant oxygen sensitivity and
structural integrity data for each OxyChip. Data from all 22
OxyChips that were recovered after removal en bloc in SOC
surgery were used in this analysis. The recovered OxyChips were
sterilized before examination. They were then physically
measured for length and microscopically examined for any
surface irregularity different from what was recorded for the
control, i.e., the same OxyChip examined pre-implant. The
stability of the oxygen sensitivity of the recovered OxyChips
was determined by recalibration of each explanted OxyChip and
comparing to its pre-implantation data. Figure 3A shows the
pre- and post-implant calibration curves for three specific cases,
namely an OxyChip from (i) an untreated SCC tumor implanted
for 22 days, (ii) a breast tumor that was treated with
chemotherapy while the implant was in the tumor for 137
days, and (iii) a sarcoma that was treated with radiotherapy
while the implant was in the tumor 78 days. Figure 3B
superimposes all six pre- and post-implant calibration curves
onto the same graph, illustrating the similarity across OxyChips
as well as pre-and post-implantation. The results showed no
significant differences between the six pre- and post-
implantation calibrations for the three OxyChips (P=0.42). In
all three cases, there were no differences between the pre- and
post-implant OxyChip calibrations suggesting that none of the
factors—residency in untreated tumors, chemotherapy, or
radiation therapy—affected the oxygen sensitivity as assessed
by re-calibrating the OxyChip. The pre- and post-implant values
of anoxic width and oxygen sensitivity, both of which are critical
parameters of oxygen calibration, are shown for all 22 recovered
OxyChips in Figures 3C, D. The mean values of anoxic width
and oxygen sensitivity of the OxyChips were not significantly
different when compared to their pre-implant values (P=0.0550
and P=0.0588, respectively; n=22). A similar analysis in a subset
of cancer patients who received neoadjuvant chemotherapy or
radiation therapy during the implant duration did not show any
significant difference between the pre- and post-implant values
of anoxic width (P=0.7746; n=6) or oxygen sensitivity (P=0.2286;
n=6). Structural integrity of the OxyChips was based primarily
on a comparison of pre- and post-implant length and also on the
microscopic examination. Of the 22 OxyChips recovered from
the resected tumor, 2 were found to be shorter in length
compared to pre-implant values (3.9 vs 5.1 mm from patient
10 and 4.0 versus 5.0 mm from patient 19), apparently due to
being cut during the bread-loafing procedure used to find the
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FIGURE 2 | Continued
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OxyChip in the tissue specimen. Seven OxyChips (Table 1,
patients 1–7), although fabricated to 5-mm length, were not
measured before implantation as indicated in Figure 3E.

The mean value of the length of the recovered OxyChips
(5.04 ± 0.13 mm; n=13), excluding the two cut-off and seven not
pre-measured OxyChips, did not change significantly from the
pre-implant value (5.01 ± 0.13; n=13; P=0.3451). Further, a
similar analysis in a subset of cancer patients who received
neoadjuvant chemotherapy or radiation during the implant
duration did not show any significant difference between the
pre- and post-implant values of the OxyChip length (P=0.6255;
n=5). This subset, although small, was considered to be an
important confirmation because they were implanted the
longest and were exposed in situ to the SOC cancer treatments.
Of note, the size of the OxyChip (whole or cut-off) does not affect
the oxygen sensitivity; however, all pieces (if any) were used in
the calibration tests reported in Figures 3A–D.

Baseline Tumor pO2 and Response to
Hyperoxygen Breathing
Figure 4 provides a summary of pO2 values measured in 16
patients during a total of 46 visits. The number of measurements
for each patient ranged from 1–7. Multiple measurements from
the same patient, including the number of days that the OxyChip
was implanted, are indicated numerically in the format (patient
number: day of measurement) in Figure 4. Of the 46 patient-
sessions measured during room-air breathing, 43 patient-
sessions, including all 16 patients, underwent further
measurements during hyperoxygen breathing. Statistical
significance (P values) for comparing the base and
hyperoxygenation pO2 values of the 43 patient-sessions are
indicated in Table 1.

Overall, excluding patient 1, the baseline pO2 data from the
malignant tumors ranged from 0.6 to 73.1 mmHg (mean 17.2 ±
2.3, median 15.7 mmHg, n=45), while hyperoxygen values
ranged from 1.5 to 144.6 mmHg (mean 42.4 ± 5.7, median
31.8 mmHg, n=42). Of the 45 baseline values, 15 (33%, 10
patients) were below 10 mmHg and 10 (22%, 8 patients) were
below 5 mmHg. Hyperoxygen intervention showed a significantly
higher pO2 (positive response) in 30 measurements (71%, 13
patients), while a significantly lower pO2 (negative response) was
observed in 4 measurements (10%, 3 patients). Eight

measurements (19%, 5 patients) did not show any significant
response to hyperoxygen breathing. It should be noted that in
four patients (Table 1, patients 3,11,20,21) the hyperoxygen
responses were mixed (positive to non-response) on
repeated measurements.

Mitigation of Tumor Hypoxia by Breathing
Hyperoxygenated Gas
The overarching goals of EPR oximetry using the OxyChip are to
identify tumor hypoxia and stratify patients as responders or non-
responders to hypoxia-mitigation interventions to optimize
oncologic outcomes (e.g., via radiotherapy). To study the
potential for clinically relevant stratification of tumors to
determine the efficacy of hyperoxic interventions, and to
examine the impact of oxygenation interventions to increase
tumor oxygen in clinical relevant ways, we used the data on pO2

from 33 measurements in the 12 patients (Table 1, patients 2–5, 9,
11, 12, 19–21, 23, 24), in which the OxyChips were either found
within the tumor at resection or known to have been placed into
the tumor during implantation via ultrasound imaging (because
these tumors shrank very significantly in response to treatment it
was not feasible to determine their position within the tumor
during measurements by post-resection evaluation). Within this
selected group of patients, the mean of the base pO2 values was
16.3 ± 2.9 mmHg (median 12.4 mmHg, range 0.6 to 73.1 mmHg),
while the mean of hyperoxygen values was 36.4 ± 6.6 mmHg
(median 20.5 mmHg, range 1.5–144.6 mmHg), These data likely
represent a more accurate measure of tumor oxygen status and
response to hyperoxygen intervention in the types of tumors for
which clinical intervention is most likely to be relevant, as
compared to the entire cohort (Figure 5A). A pair-wise
representation of base and hyperoxygen values from 33
measurements (in the 12 patients) where the OxyChip was in
the tumor is shown in Figure 5B. We further tested to see whether
a correlation existed between the base pO2 and its response to
hyperoxygenation in these tumors. The data, as shown in
Figure 5C, showed a Pearson’s correlation coefficient r=0.52
suggesting a moderately positive correlation between the base
pO2 and response to hyperoxygenation.

Since it is known that the radiobiological response of cancers
is critically dependent on tumor oxygenation, especially hypoxic
pO2 values, we converted the oxygenation data into the oxygen

FIGURE 2 | Repeated measurements of tumor pO2 using OxyChip. The reliability of the OxyChip for repeated measurements of tumor oxygen is demonstrated in
two patients, an untreated SCC tumor in the short term and a breast tumor that was undergoing chemotherapy in the long term. (A) Implantation of the OxyChip in
an untreated SCC on the left frontal scalp of a 72-year-old female (patient 9). (B) EPR measurement using a flexible surface-coil detector placed over the implant.
(C) Surgically resected tumor (SOC therapy) showing the presence of the OxyChip in the tumor. (D) pO2 data (mean ± SEM) measured in three separate visits over a
period of 6 days before tumor resection. The data were obtained during room-air breathing, hyperoxygen breathing and return to room-air breathing on days 1, 4,
and 6 after implantation of the OxyChip. The solid and dotted black lines represent the mean curve and 95% CI, respectively, of all measurements, suggesting that
the three sets of data are not significantly different from each other. Note that the gray representation of “hyperoxygen breathing”, as well as the time periods without
oxygenation, are an average of the time for three sessions. The measurements on day 1 could not be continued beyond 5 minutes into hyperoxygenation due to
technical reasons. (E) Mean (± SEM) baseline and estimated hyperoxygen pO2 values at 10 minutes for day 4 and 6 showing no significant difference between the
baseline values or between the hyperoxygen values. (F) Implantation site of a left axillary node breast tumor (IDC) of a 55-year-old female (patient 20). EPR
measurements occurred during seven visits while she underwent chemotherapy for > 4 months. (G) Ultrasound-guided implantation of the OxyChip in the tumor.
The OxyChip has been deployed within the tumor, and the needle is being retracted. (H) EPR measurement using a flexible surface-coil detector placed over the
tumor. (I) Changes in pO2 (baseline and response to hyperoxygenation; mean ± SEM) during the treatment period. The P values (unpaired t-test) represent
significance of the hyperoxygenation values compared to corresponding baseline values. (J) Correlation between baseline and hyperoxygenation pO2 values (mean ±
SEM) showing a strong positive correlation (Pearson’s correlation coefficient r=0.88).
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FIGURE 3 | Stability of OxyChip implant and function in tumors—during residency and treatment. The stability of the OxyChip for long-term monitoring of pO2 in a variety
of human tumors, implant-periods, and treatments was evaluated by checking pre/post calibration of their oxygen sensitivity and structural integrity (morphology) of the
implant. Representative calibration data include OxyChips removed after: (A) 22 days in an untreated SCC (patient 12); 137 days in a breast tumor (IDC) treated with
chemotherapy (patient 17); and 78 days in a sarcoma (patient 18) treated with radiation. There were no apparent changes in the calibrations including linearity between
pre- and explanted OxyChips. (B) F-test and overall fit of all three pre- and post-implant OxyChips do not show any statistically significant differences in their calibration.
(C) EPR spectral width of pre- and post-implant OxyChips under anoxic condition (Anoxic Width). #Lost OxyChip. There was no overall significant difference in the anoxic
width between the pre- and explanted OxyChips (22 OxyChips, mean ± SEM, paired t-test, P=0.0550). There were also no significant differences among the OxyChips
from patients 15–20 that underwent chemo- or radiation therapy during implant (paired t-test, P=0.7746; n=6). (D) Pre- and post-implant oxygen sensitivity of each
OxyChip. #Lost OxyChip. There was no overall significant difference in the oxygen sensitivity between the pre- and explanted OxyChips (22 OxyChips, mean ± SEM,
paired t-test, P=0.0588). There were also no significant differences among the oxygen sensitivity of the OxyChips from patients 15–20 that underwent chemo- or radiation
therapy during implant (paired t-test, P=0.2286; n=6). (E) Pre- and post-implant length of OxyChips. There were no overall significant differences between the pre- and
post-implant OxyChips (13 OxyChips, mean ± SEM, paired t-test, P=0.3452). There were also no significant differences among the OxyChips from patients 15–20 (patient
19 excluded) that underwent chemo- or radiation therapy during implant (paired t-test, P=0.6255; n=5). Key: #Lost OxyChip; @Made to 5-mm length, but not measured
before implantation; &Possibly cut during recovery.
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FIGURE 4 | Tumor pO2 values in patients breathing room air and hyperoxygen gas. The pO2 values (mean ± SEM) obtained before initiation of hyperoxygenation
(Base value) and after hyperoxygenation (Hyperoxygenation) in a total of 46 measurements from 16 patients. For each measurement the tumor type, patient number,
and measurement day relative to initial implantation are noted, i.e. “Breast (21:5)” indicates that patient 21 had a breast malignancy and this measurement occurred
on day 5 after OxyChip implantation. Multiple measurements from the same patient are thus indicated by different days relative to OxyChip implantation. Statistical
significance data (unpaired t-test) between base and hyperoxygenation pO2 values for each patient/measurement are grouped as *P≤0.05; **P<0.01; ***P<0.001
(actual P values are in Table 1). A red-colored * denotes significantly negative response to hyperoxygenation.
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enhancement ratio (OER) as modeled and reported by Grimes
and Partridge (56). Figure 5D depicts a view of the level of radio-
sensitization, in terms of OER, by hyperoxygenation. The results
indicated that in about 27% of the measurements (9 out of 33)
the tumors were severely hypoxic (pO2 < 5 mmHg) and 67% (6

out of 9) of them could be sensitized to radiation with ≥20% OER
gain. Further, about 42% of the measurements (14 out of 33)
were radiobiologically hypoxic (pO2 < 10 mmHg) and 64% (9
out of 14) of the hypoxic tumors could be sensitized to radiation
with ≥10% OER gain. Twenty-four measurements (73%) showed

A B

C D

FIGURE 5 | Mitigation of tumor hypoxia for therapeutic enhancement. The pO2 data from 33 measurements in 12 patients (patients 2–5, 9, 11, 12, 19–21, 23, 24),
wherein the OxyChips were found inside the tumor in the resected specimen or placed in the tumor during ultrasound-guided implantation but unable to ascertain
their location after neoadjuvant treatment, were used to identify the population of hypoxic tumors and responders to hyperoxygen intervention. (A) The first pair of
bars give the values for the measurements in all malignant tumors. The second and third pairs show the measurements for the malignant tumors in which the
OxyChip was or was not found to be in the tumors at the time of resection. Within the third selected group of patients the mean of base pO2 values was 16.3 ± 2.9
mmHg, while that of hyperoxygen pO2 values was 36.4 ± 6.6 mmHg (P=0.00115). (B) A pair-wise representation of the base and hyperoxygen pO2 values in the 33
measurements in which the OxyChip was in the tumor. (C) Correlation between the baseline pO2 and its response to hyperoxygenation in the measurements in
these selected tumors, exhibiting a moderate correlation (Pearson’s correlation coefficient r=0.52). (D) Level of radio-sensitization, in terms of oxygen enhancement
ratio (OER), by hyperoxygenation. Nine measurements showed severely hypoxic (pO2 < 5 mmHg) tumors in which six could be sensitized to radiation (i.e., showed
≥ 20% OER gain). Twenty-four measurements had pO2 ≥ 5 mmHg and, irrespective of whether they responded or not, hyperoxygenation probably would not have
had a beneficial radio-sensitizing effect in these tumors at the times measured.
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the tumors were normoxic (pO2 ≥ 5 mmHg) and, consequently,
irrespective of whether they responded or not to hyperoxygenation,
there may not have been an appreciable radiosensitiziation impact
at the times measured. Overall, these results emphasize the need to
measure pO2 in each tumor at the time of treatment in order to
optimize hypoxia-mitigation strategies.

DISCUSSION

The results of the present study establish, for the first time, that
tumor oxygen levels can be measured in cancer patients
repeatedly using EPR oximetry with the OxyChip to obtain
both initial baseline values and values after interventions
designed to increase tumor oxygenation. Importantly, these
results also demonstrate the capacity to measure these values
successfully over long periods of time. The oxygen data obtained
from a small cohort of patients showed considerable variations
among tumors as well as in the same tumor, with or without
cancer-directed therapy, as a function of time. Clinically
significant hypoxia was observed in a subset of tumors with
varying levels of response to hypoxia-mitigation by breathing
oxygen-enriched gas. However, despite the significant
heterogeneity of tumor pO2 we observed statistically significant
increases in tumor oxygen following administration of
hyperoxygenated gas across various types of tumors and
patients. This finding suggests that the OxyChip has the
potential to measure subtle changes of tumor oxygen before
and during cancer treatment and as such paves the way for using
EPR oximetry in the clinical setting for cancer prognosis and
treatment planning. Overall, the results underscore the
importance of individualized measurements of tumor oxygen
levels, both at baseline and in response to hyperoxygenation
interventions designed to optimize therapeutic outcomes.

The objectives of this first-in-human device study were to
establish the safety of OxyChip implantation and subsequent
EPR oximetry in human tumors, as well as to establish the
feasibility of using the OxyChip for repeated measurements of
tumor oxygen to obtain clinically useful data. We have recently
reported on the safety of the OxyChip after implantation into
human tumors (51). The results showed that OxyChip
implantation followed by EPR oximetry was safe and feasible
without any significant clinical adverse effects in all 24 patients
studied. Both the implantation procedure and the process of EPR
oximetry in the clinic were well tolerated by the patients.
Histopathologic findings revealed no clinically significant
pathology, indicating that the tissue reaction to the OxyChip
was well within expectations for an implanted device.

Previously, we have established the OxyChip to be a robust,
stable, and reliable sensor for repeated measurements of pO2 for
up to one year using a rat model (36). In the present study, the
OxyChips were implanted in a variety of human tumors (n=24)
with implantation periods (4–138 days) during no treatment
(n=16), chemotherapy (n=5), and radiotherapy (n=1). The
OxyChips that have been successfully recovered in 22 patients

appeared to have been unaffected—in terms of structural integrity
and oxygen sensitivity—by the variable periods of residency in the
tumors. Importantly, the OxyChips appeared to be unaffected by
chemotherapy in all patients undergoing chemotherapy (five
patients, 124–138 days) and radiotherapy (in one patient, 78
days) suggesting that they could be reliably used to monitor
changes in pO2 during or post-treatment. It should be noted
that although ionizing radiation such as X-rays theoretically may
induce some transient or permanent damage to the OxyChip,
radiation doses of up to 80 Gy did not impair its oxygen-sensing
ability in rat muscle (36). Furthermore, oxygen-sensing is an
intrinsic property of the OxyChip; its size or shape (linear, bent, or
physically damaged) does not affect its response to oxygen. This is
particularly useful for implanting OxyChips of any shape and size,
as may be needed for a given study (57, 58).

Successful pO2 measurements were made in 16 of the 24
patients measured. Except in patient 6, where the OxyChip
inadvertently dislodged or fell out soon after implantation
prior to initiation of oximetry measurements, in all other cases
the OxyChips were in the tumor or in tissue nearby at the time of
EPR measurements. The inability to detect a signal from the
other 7 patients may have been due to the implant depth from
the skin surface of the tumor or from tissue mobility, e.g., in
breast tissue. From the gross estimate of the implant depth in the
resected tumors in the pathology lab and/or from the
ultrasound-guided placement of the OxyChips presented in
Table 1 (‘Depth of OxyChip in Tumor’), it appears that the
implants at depths of approximately >10 mm were not detectable
(Supp. Figure 4). Of note, as four of these were breast tumors, we
suspect that the nature of the mammary tissue may play a role in
the attenuation of RF power penetration. Nevertheless, the data
from the present study suggest that the measurable depth limit is
about 10 mm in human tumors using the current procedures,
OxyChip configuration, and EPR instrument.

The data presented here, although in a relatively small cohort of
patients, highlight thepotential impactof insight into tumorhypoxia
both prior to and during hyperoxygenation interventions.
Importantly, EPR oximetry allows evaluation of the pO2

surrounding the OxyChip. In human tumors the pO2 can change,
in an unpredictable fashion, with administration of oncologic
therapies over prolonged periods of time. For example, in patient
20 (IDC of the left breast, with implantation into an axillary node)
while the malignancy appeared initially to be normoxic, with
progressive administration of chemotherapy over four months it
appeared to become sequentially more hypoxic, eventually reaching
a lowvalue of pO2<5mmHgprior to rebounding slightly.However,
in patient 19 (also with an IDC of the left breast, implantation into
the primary malignancy) both before and after administration of
chemotherapy over four months, the tumor appeared to never
become hypoxic. This variation in baseline pO2 also occurred for
individual tumors without any oncologic intervention (for example,
patient 11 with a SCCof the skin who received surgery alone, whose
cancer was not hypoxic with a pO2 of 13.3 mmHg on day 8, but
hypoxiconday22withapO2of1.8mmHg).Thesedatahighlight the
need to understand tumor hypoxia at the point of interest, i.e.,
immediately prior to interventions designed to impact hypoxia.
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Increased tumor oxygenation in and of itself is not necessarily
clinically useful, and in an attempt to understand the impact of
hyperoxygenation, an exploratory analysis on a subset of
implanted cancers in which the OxyChip was clearly intra-
tumoral was performed (Figure 5). Oxygenated tumors have
been reported to respond better to radiotherapy by a factor 2.5–3
relative to anoxic tumors (59–61). Based on the hypothesis that
the radiation-induced cell killing is due to permanently fixing the
radical-mediated DNA damage by molecular oxygen and thus
making the DNA damage irreparable, Grimes and Partridge (56)
proposed a model for expressing the oxygen enhancement of cell
killing and validated it using reported data on experimental
oxygen curves (59–61). The model calculates oxygen
enhancement ratio (OER), which is defined as a fold-increase
in radiosensitivity by tumor oxygen relative to anoxic tumor.
This analysis reveals the utility of understanding baseline oxygen
and the response to hyperoxygenation in situ at the time
of intervention.

In our subset study of measurements made in malignant
tumors, only a small number of measurements (9 out of 33 in 7
patients) demonstrated severe hypoxia at baseline, and of these,
only 6 (in 5 patients) responded to hyperoxygenation with a gain
of ≥20% oxygen enhancement ratio (OER). This set of patients,
as their tumors were found to be both hypoxic and responsive,
would be prime candidates for hyperoxygenation during
radiotherapy. In contrast, 24 of the measurements in
malignant tissue revealed baseline pO2 > 5 mmHg and,
although increase in pO2 was evident after hyperoxygenation
in 17 measurements, if there were no areas that were more
hypoxic, the radiobiological impact is expected to be modest or
negligible. Although this analysis is clearly speculative, it may
serve as a useful framework for clinical-trial design and
interpretation. In particular it would be very useful to carry
out clinical trials in which hyperoxygenation strategies are
combined with serial measurements of tumor oxygen, using
clinical outcomes to determine the circumstances in which
hyperoxygenation can improve the efficacy of tumor therapy.

The stable and linear calibration of the OxyChip, combined
with its fast time-response can enable clinically feasible
monitoring of dynamic changes of tumor pO2. As
demonstrated here, measurements can be obtained both prior
to and during hyperoxygenation over many months. The
promise of EPR oximetry to make repeated pO2 measurements
in human tumors under clinically applicable conditions could
have a significant impact on routine clinical decision-making
processes by making previously unavailable information more
easily accessible. Information regarding the presence of tumor
hypoxia before the treatment can help to identify those patients
who can (and cannot) benefit from a proposed therapeutic
procedure. Furthermore, knowledge about the changes in
tumor oxygenation induced by a given hyperoxic protocol,
may lead to individualization of hypoxia-mitigation strategies.
In so doing, EPR oximetry may be a useful component of
personalized precision medicine with respect to hypoxia interventions.

In the process of establishing the feasibility of the technology,
we have also identified some potential limitations, which need to
be addressed in order to improve the applicability of this

technology to a wide range of cancers. In this study, the EPR
oximetry uses a stable implantable sensor, the OxyChip, which is
useful for repeated, longitudinal monitoring of oxygen levels
during treatment. The method is minimally invasive in that it
requires one-time implantation of the sensor(s) and, at present,
its surgical removal; however, subsequent measurements are
made noninvasively and repeatedly over the long-term while it
remains implanted. The potential limitation of providing data
from one site and not providing information on oxygen
distribution in the entire tissue may be mitigated using
multiple implants to assess heterogeneity of oxygen (57, 62), or
by combining EPR oximetry with volumetric methods of oxygen
assessment (63–65). The operational frequency, approximately
1,150 MHz, of the current EPR scanner limits the use of the
OxyChip to superficial tumors; however, this limitation can be
overcome using implantable resonators containing OxyChip-like
sensors (66, 67) or low-frequency and pulse EPR methods (68–
71). Potential improvements in the future could also include the
use of other clinical imaging modalities in addition to
ultrasound, e.g., CT or PET, to improve both the precision of
implantation and visualization of the implant in the tumor
during treatment and pO2 measurements (72). Furthermore,
mult ip le smal ler implants to assess tumor oxygen
heterogeneity, as well as the ability to measure deeper tumors,
are needed to expand the utility of EPR oximetry for a wider
range of tumors and treatment. We are committed to continue
our efforts to address these improvements.

CONCLUSION

The data from this study support the feasibility of using EPR
oximetry to identify the presence of hypoxia and to identify the
potential for hyperoxic therapy to improve tumor oxygen in each
patient. This report of the first-in-human study of EPR oximetry
using the OxyChip demonstrated variable levels of (i) tumor
oxygen among patients, (ii) clinically significant hypoxia, and
(iii) response to hyperoxygen. These data highlight the need for
individualized assessment of tumor oxygenation in the context
of planned hyperoxygenation intervention to optimize
clinical outcomes.
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