1,344 research outputs found

    A spatially explicit and quantitative vulnerability assessment of ecosystem service change in Europe

    Get PDF
    Environmental change alters ecosystem functioning and may put the provision of services to human at risk. This paper presents a spatially explicit and quantitative assessment of the corresponding vulnerability for Europe, using a new framework designed to answer multidisciplinary policy relevant questions about the vulnerability of the human-environment system to global change. Scenarios were constructed for a range of possible changes in socio-economic trends, land uses and climate. These scenarios were used as inputs in a range of ecosystem models in order to assess the response of ecosystem function as well as the changes in the services they provide. The framework was used to relate the impacts of changing ecosystem service provision for four sectors in relation to each other, and to combine them with a simple, but generic index for societal adaptive capacity. By allowing analysis of different sectors, regions and development pathways, the vulnerability assessment provides a basis for discussion between stakeholders and policymakers about sustainable management of Europe¿s natural resource

    Light transmission assisted by Brewster-Zennek modes in chromium films carrying a subwavelength hole array

    Get PDF
    This work confirms that not only surface plasmons but many other kinds of electromagnetic eigenmodes should be considered in explaining the values of the transmittivity through a slab bearing a two-dimensional periodic corrugation. Specifically, the role of Brewster-Zennek modes appearing in metallic films exhibiting regions of weak positive dielectric constant. It is proposed that these modes play a significant role in the light transmission in a thin chromium film perforated with normal cylindrical holes, for appropriate lattice parameters.Comment: 5 pages, 4 figures. Published versio

    Potential Energy Surface for H_2 Dissociation over Pd(100)

    Full text link
    The potential energy surface (PES) of dissociative adsorption of H_2 on Pd(100) is investigated using density functional theory and the full-potential linear augmented plane wave (FP-LAPW) method. Several dissociation pathways are identified which have a vanishing energy barrier. A pronounced dependence of the potential energy on ``cartwheel'' rotations of the molecular axis is found. The calculated PES shows no indication of the presence of a precursor state in front of the surface. Both results indicate that steering effects determine the observed decrease of the sticking coefficient at low energies of the H_2 molecules. We show that the topology of the PES is related to the dependence of the covalent H(s)-Pd(d) interactions on the orientation of the H_2 molecule.Comment: RevTeX, 8 pages, 5 figures in uufiles forma

    Correlation between Voronoi volumes in disc packings

    Full text link
    We measure the two-point correlation of free Voronoi volumes in binary disc packings, where the packing fraction ϕavg\phi_{\rm avg} ranges from 0.8175 to 0.8380. We observe short-ranged correlations over the whole range of ϕavg\phi_{\rm avg} and anti-correlations for ϕavg>0.8277\phi_{\rm avg}>0.8277. The spatial extent of the anti-correlation increases with ϕavg\phi_{\rm avg} while the position of the maximum of the anti-correlation and the extent of the positive correlation shrink with ϕavg\phi_{\rm avg}. We conjecture that the onset of anti-correlation corresponds to dilatancy onset in this system

    Phase transition in a static granular system

    Full text link
    We find that a column of glass beads exhibits a well-defined transition between two phases that differ in their resistance to shear. Pulses of fluidization are used to prepare static states with well-defined particle volume fractions ϕ\phi in the range 0.57-0.63. The resistance to shear is determined by slowly inserting a rod into the column of beads. The transition occurs at ϕ=0.60\phi=0.60 for a range of speeds of the rod.Comment: 4 pages, 4 figures. The paper is significantly extended, including new dat

    On the existence of stationary states during granular compaction

    Full text link
    When submitted to gentle mechanical taps a granular packing slowly compacts until it reaches a stationary state that depends on the tap characteristics. The properties of such stationary states are experimentally investigated. The influence of the initial state, taps properties and tapping protocol are studied. The compactivity of the packings is determinated. Our results strongly support the idea that the stationary states are genuine thermodynamic states.Comment: to be published in EPJE. The original publication will be available at www.europhysj.or

    research article

    Get PDF
    During embryonic development and tissue homeostasis, reproducible proportions of differentiated cell types are specified from populations of multipotent precursor cells. Molecular mechanisms that enable both robust cell-type proportioning despite variable initial conditions in the precursor cells, and the re-establishment of these proportions upon perturbations in a developing tissue remain to be characterized. Here, we report that the differentiation of robust proportions of epiblast-like and primitive endoderm-like cells in mouse embryonic stem cell cultures emerges at the population level through cell-cell communication via a short-range fibroblast growth factor 4 (FGF4) signal. We characterize the molecular and dynamical properties of the communication mechanism and show how it controls both robust cell-type proportioning from a wide range of experimentally controlled initial conditions, as well as the autonomous re-establishment of these proportions following the isolation of one cell type. The generation and maintenance of reproducible proportions of discrete cell types is a new function for FGF signaling that might operate in a range of developing tissues

    The role of electromagnetic trapped modes in extraordinary transmission in nanostructured materials

    Get PDF
    We assert that the physics underlying the extraordinary light transmission (reflection) in nanostructured materials can be understood from rather general principles based on the formal scattering theory developed in quantum mechanics. The Maxwell equations in passive (dispersive and absorptive) linear media are written in the form of the Schr\"{o}dinger equation to which the quantum mechanical resonant scattering theory (the Lippmann-Schwinger formalism) is applied. It is demonstrated that the existence of long-lived quasistationary eigenstates of the effective Hamiltonian for the Maxwell theory naturally explains the extraordinary transmission properties observed in various nanostructured materials. Such states correspond to quasistationary electromagnetic modes trapped in the scattering structure. Our general approach is also illustrated with an example of the zero-order transmission of the TE-polarized light through a metal-dielectric grating structure. Here a direct on-the-grid solution of the time-dependent Maxwell equations demonstrates the significance of resonances (or trapped modes) for extraordinary light transmissioComment: 14 pages, 6 figures; Discussion in Section 4 expanded; typos corrected; a reference added; Figure 4 revise

    An invariant distribution in static granular media

    Full text link
    We have discovered an invariant distribution for local packing configurations in static granular media. This distribution holds in experiments for packing fractions covering most of the range from random loose packed to random close packed, for beads packed both in air and in water. Assuming only that there exist elementary cells in which the system volume is subdivided, we derive from statistical mechanics a distribution that is in accord with the observations. This universal distribution function for granular media is analogous to the Maxwell-Boltzmann distribution for molecular gasses.Comment: 4 pages 3 figure

    Hydrophilic Crosslinked TEMPO‐Methacrylate Copolymers – a Straight Forward Approach towards Aqueous Semi‐Organic Batteries

    Get PDF
    Abstract Crosslinked hydrophilic poly(2,2,6,6‐tetramethylpiperidinyl‐ N ‐oxyl‐co‐[2‐(methacryloyloxy)‐ethyl]trimethyl ammonium chloride) [poly(TEMPO‐ co ‐METAC)] polymers with different monomer ratios are synthesized and characterized regarding a utilization as electrode material in organic batteries. These polymers can be synthesized rapidly utilizing commercial starting materials and reveal an increased hydrophilicity compared to the state‐of‐the‐art poly(2,2,6,6‐tetramethylpiperidinyl‐ N ‐oxyl‐4‐methacrylate) (PTMA). By increasing the hydrophilicity of the polymer, a preparation of cathode composites is enabled, which can be used for aqueous semi‐organic batteries. Detailed battery testing confirms that the additional METAC groups do not impair the battery behavior while enabling straight‐forward zinc‐TEMPO batteries.Organic cathode in aqueous electrolyte : A crosslinked hydrophilic 2,2,6,6‐tetramethylpiperidine‐ N ‐oxyl radical (TEMPO) bearing polymer was synthesized, which enables aqueous battery chemistries that have not been compatible with poly(TEMPO‐methacrylate) derived structures before. Extensive battery testing was performed, to reveal the battery chemistry of the polymer containing composite electrodes in an aqueous semi‐organic zinc coin‐cell setup. imag
    corecore