271 research outputs found

    Evolutionary aspects in evaluating mutations in the melanocortin 4 receptor

    Get PDF
    More than 70 missense mutations have been identified in the human melanocortin 4 receptor (MC4R), and many of them have been associated with obesity. In a number of cases, the causal link between mutations in MC4R and obesity is controversially discussed. Here, we mined evolution as an additional source of structural information that may help to evaluate the functional relevance of naturally occurring variations in MC4R. The sequence information of more than 60 MC4R orthologs enabled us to identify residues that are important for maintaining receptor function. More than 90% of all inactivating mutations found in obese patients were located at amino acid positions that are highly conserved during 450 million years of MC4R evolution in vertebrates. However, for a reasonable number of MC4R variants, we found no correlation between structural conservation of the mutated position and the reported functional consequence. By re-evaluating selected mutations in the MC4R, we demonstrate the usefulness of combining functional and evolutionary approaches

    Gpr126 functions in schwann cells to control differentiation and myelination via G-protein activation

    Get PDF
    The myelin sheath surrounding axons ensures that nerve impulses travel quickly and efficiently, allowing for the proper function of the vertebrate nervous system. We previously showed that the adhesion G-protein-coupled receptor (aGPCR) Gpr126 is essential for peripheral nervous system myelination, although the molecular mechanisms by which Gpr126 functions were incompletely understood. aGPCRs are a significantly understudied protein class, and it was unknown whether Gpr126 couples to G-proteins. Here, we analyze Dhh(Cre);Gpr126(fl/fl) conditional mutants, and show that Gpr126 functions in Schwann cells (SCs) for radial sorting of axons and myelination. Furthermore, we demonstrate that elevation of cAMP levels or protein kinase A activation suppresses myelin defects in Gpr126 mouse mutants and that cAMP levels are reduced in conditional Gpr126 mutant peripheral nerve. Finally, we show that GPR126 directly increases cAMP by coupling to heterotrimeric G-proteins. Together, these data support a model in which Gpr126 functions in SCs for proper development and myelination and provide evidence that these functions are mediated via G-protein-signaling pathways

    Involvement of the V2 Vasopressin Receptor in Adaptation to Limited Water Supply

    Get PDF
    Mammals adapted to a great variety of habitats with different accessibility to water. In addition to changes in kidney morphology, e.g. the length of the loops of Henle, several hormone systems are involved in adaptation to limited water supply, among them the renal-neurohypophysial vasopressin/vasopressin receptor system. Comparison of over 80 mammalian V2 vasopressin receptor (V2R) orthologs revealed high structural and functional conservation of this key component involved in renal water reabsorption. Although many mammalian species have unlimited access to water there is no evidence for complete loss of V2R function indicating an essential role of V2R activity for survival even of those species. In contrast, several marsupial V2R orthologs show a significant increase in basal receptor activity. An increased vasopressin-independent V2R activity can be interpreted as a shift in the set point of the renal-neurohypophysial hormone circuit to realize sufficient water reabsorption already at low hormone levels. As found in other desert mammals arid-adapted marsupials show high urine osmolalities. The gain of basal V2R function in several marsupials may contribute to the increased urine concentration abilities and, therefore, provide an advantage to maintain water and electrolyte homeostasis under limited water supply conditions

    Stakeholder engagement to ensure the sustainability of biobanks: a survey of potential users of biobank services

    Get PDF
    Biobanks are important infrastructures facilitating biomedical research. After a decade of rolling out such infrastructures, a shift in attention to the sustainability of biobanks could be observed in recent years. In this regard, an increase in the as yet relatively low utilisation rates of biobanks has been formulated as a goal. Higher utilisation rates can only be achieved if the perspectives of potential users of biobanks-particularly researchers not yet collaborating with biobanks-are adequately considered. To better understand their perspectives, a survey was conducted at ten different research institutions in Germany hosting a centralised biobank. The survey targeted potential users of biobank services, i.e. researchers working with biosamples. It addressed the general demand for biosamples, strategies for biosample acquisition/storage and reasons for/against collaborating with biobanks. In total, 354 researchers filled out the survey. Most interestingly, only a minority of researchers (12%) acquired their biosamples via biobanks. Of the respondents not collaborating with biobanks on sample acquisition, around half were not aware of the (services of the) respective local biobank. Those who actively decided against acquiring biosamples via a biobank provided different reasons. Most commonly, respondents stated that the biosamples required were not available, the costs were too high and information about the available biosamples was not readily accessible. Biobanks can draw many lessons from the results of the survey. Particularly, external communication and outreach should be improved. Additionally, biobanks might have to reassess whether their particular collection strategies are adequately aligned with local researchers' needs

    Activation of Adhesion GPCR EMR2/ADGRE2 Induces Macrophage Differentiation and Inflammatory Responses via Gα16/Akt/MAPK/NF-κB Signaling Pathways

    Get PDF
    EMR2/ADGRE2 is a human myeloid-restricted adhesion G protein-coupled receptor critically implicated in vibratory urticaria, a rare type of allergy caused by vibration-induced mast cell activation. In addition, EMR2 is also highly expressed by monocyte/macrophages and has been linked to neutrophil migration and activation. Despite these findings, little is known of EMR2-mediated signaling and its role in myeloid biology. In this report, we show that activation of EMR2 via a receptor-specific monoclonal antibody promotes the differentiation of human THP-1 monocytic cell line and induces the expression of pro-inflammatory mediators, including IL-8, TNF-α, and MMP-9. Using specific signaling inhibitors and siRNA knockdowns, biochemical and functional analyses reveal that the EMR2-mediated signaling is initiated by Gα16, followed by the subsequent activation of Akt, extracellular signal-regulated kinase, c-Jun N-terminal kinase, and nuclear factor kappa-light-chain-enhancer of activated B cells. Our results demonstrate a functional role for EMR2 in the differentiation and inflammatory activation of human monocytic cells and provide potential targets for myeloid cell-mediated inflammatory disorders

    Immunological profile in a family with nephrogenic diabetes insipidus with a novel 11 kb deletion in AVPR2 and ARHGAP4 genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Congenital nephrogenic diabetes insipidus (NDI) is characterised by an inability to concentrate urine despite normal or elevated plasma levels of the antidiuretic hormone arginine vasopressin. We report a Japanese extended family with NDI caused by an 11.2-kb deletion that includes the entire <it>AVPR2 </it>locus and approximately half of the <it>Rho GTPase-activating protein 4 </it>(<it>ARHGAP4</it>) locus. ARHGAP4 belongs to the RhoGAP family, Rho GTPases are critical regulators of many cellular activities, such as motility and proliferation which enhances intrinsic GTPase activity.</p> <p>ARHGAP4 is expressed at high levels in hematopoietic cells, and it has been reported that an NDI patient lacking <it>AVPR2 </it>and all of <it>ARHGAP4 </it>showed immunodeficiency characterised by a marked reduction in the number of circulating CD3+ cells and almost complete absence of CD8+ cells.</p> <p>Methods</p> <p>PCR and sequencing were performed to identify the deleted region in the Japanese NDI patients. Immunological profiles of the NDI patients were analysed by flow cytometry. We also investigated the gene expression profiles of peripheral blood mononuclear cells (PBMC) from NDI patients and healthy controls in microarray technique.</p> <p>Results</p> <p>We evaluated subjects (one child and two adults) with 11.2-kb deletion that includes the entire <it>AVPR2 </it>locus and approximately half of the <it>ARHGAP4</it>. Hematologic tests showed a reduction of CD4+ cells in one adult patient, a reduction in CD8+ cells in the paediatric patient, and a slight reduction in the serum IgG levels in the adult patients, but none of them showed susceptibility to infection. Gene expression profiling of PBMC lacking <it>ARHGAP4 </it>revealed that expression of RhoGAP family genes was not influenced greatly by the lack of <it>ARHGAP4</it>.</p> <p>Conclusion</p> <p>These results suggest that loss of <it>ARHGAP4 </it>expression is not compensated for by other family members. ARHGAP4 may play some role in lymphocyte differentiation but partial loss of <it>ARHGAP4 </it>does not result in clinical immunodeficiency.</p

    It takes two transducins to activate the cGMP-phosphodiesterase 6 in retinal rods

    Get PDF
    Among cyclic nucleotide phosphodiesterases (PDEs), PDE6 is unique in serving as an effector enzyme in G protein-coupled signal transduction. In retinal rods and cones, PDE6 is membrane-bound and activated to hydrolyse its substrate, cGMP, by binding of two active G protein alpha-subunits (G alpha*). To investigate the activation mechanism of mammalian rod PDE6, we have collected functional and structural data, and analysed them by reaction-diffusion simulations. G alpha* titration of membrane-bound PDE6 reveals a strong functional asymmetry of the enzyme with respect to the affinity of G alpha* for its two binding sites on membrane-bound PDE6 and the enzymatic activity of the intermediary 1 : 1 G alpha*. PDE6 complex. Employing cGMP and its 8-bromo analogue as substrates, we find that G alpha*. PDE6 forms with high affinity but has virtually no cGMP hydrolytic activity. To fully activate PDE6, it takes a second copy of G alpha* which binds with lower affinity, forming G alpha*. PDE6. G alpha*. Reaction-diffusion simulations show that the functional asymmetry of membrane-bound PDE6 constitutes a coincidence switch and explains the lack of G protein-related noise in visual signal transduction. The high local concentration of G alpha* generated by a light-activated rhodopsin molecule efficiently activates PDE6, whereas the low density of spontaneously activated G alpha* fails to activate the effector enzyme.This work was funded by Deutsche Forschungsgemeinschaftthrough grant nos. SP 1130/1-1 and SFB 449 to M.H., K.P.H. andC.M.T.S., SFB 740 to F.N., M.H., K.P.H., T.M. and C.M.T.S., a EuropeanResearch Council starting grant (pcCell) to F.N. and a EuropeanResearch Council advanced grant (TUDOR) to K.P.H. E.B. holds aFreigeist-Fellowship from the Volkswagen Foundatio

    Reduced Food Intake and Body Weight in Mice Deficient for the G Protein-Coupled Receptor GPR82

    Get PDF
    G protein-coupled receptors (GPCR) are involved in the regulation of numerous physiological functions. Therefore, GPCR variants may have conferred important selective advantages during periods of human evolution. Indeed, several genomic loci with signatures of recent selection in humans contain GPCR genes among them the X-chromosomally located gene for GPR82. This gene encodes a so-called orphan GPCR with unknown function. To address the functional relevance of GPR82 gene-deficient mice were characterized. GPR82-deficient mice were viable, reproduced normally, and showed no gross anatomical abnormalities. However, GPR82-deficient mice have a reduced body weight and body fat content associated with a lower food intake. Moreover, GPR82-deficient mice showed decreased serum triacylglyceride levels, increased insulin sensitivity and glucose tolerance, most pronounced under Western diet. Because there were no differences in respiratory and metabolic rates between wild-type and GPR82-deficient mice our data suggest that GPR82 function influences food intake and, therefore, energy and body weight balance. GPR82 may represent a thrifty gene most probably representing an advantage during human expansion into new environments
    • …
    corecore