89 research outputs found

    Design and biofabrication of a leaf-inspired vascularized cell-delivery device

    Get PDF
    We designed and biofabricated a channeled construct as a possible cell-delivery device that can be endothelialized to overcome size limitations due to oxygen diffusion. The channeled device mimicking a leaf was designed using computer-aided design software, with fluid flow through the channels visualized using simulation studies. The device was fabricated either by form casting using a custom 3D-printed plastic mold or by 3D-bioprinting using Pluronic F-127 as sacrificial ink to print the channels. The actual leaf was cast or bioprinted using hydrogel made from a mixture of tunicate cellulose nanofibers and alginate that was cross-linked in calcium chloride solution to allow a stable device. The resulting device was a 20 7 8 7 3 mm or 35 7 18 7 3 mm (length 7 width 7 height) leaf with one main channel connected to several side channels. Surface modification using periodate oxidation, followed by laminin bioconjugation, was performed to enhance endothelial cell adhesion in the channels. We subsequently used human umbilical vein endothelial cells to demonstrate the efficacy of the device for promoting endothelialization. These results indicated that the biofabricated device has great potential for use in tissue-engineering for various applications associated with the need of perfusable vasculature

    Determination of insulin secretion from stem cell-derived islet organoids with liquid chromatography-tandem mass spectrometry

    Get PDF
    Organoids are laboratory-grown 3D organ models, mimicking human organs for e.g. drug development and personalized therapy. Islet organoids (typically 100–200 µm), which can be grown from the patient́s own cells, are emerging as prototypes for transplantation-based therapy of diabetes. Selective methods for quantifying insulin production from islet organoids are needed, but sensitivity and carry-over have been major bottlenecks in previous efforts. We have developed a reverse phase liquid chromatography-tandem mass spectrometry (RPLC-MS/MS) method for studying the insulin secretion of islet organoids. In contrast to our previous attempts using nano-scale LC columns, conventional 2.1 mm inner diameter LC column (combined with triple quadrupole mass spectrometry) was well suited for sensitive and selective measurements of insulin secreted from islet organoids with low microliter-scale samples. Insulin is highly prone to carry-over, so standard tubings and injector parts were replaced with shielded fused silica connectors. As samples were expected to be very limited, an extended Box-Behnken experimental design for the MS settings was conducted to maximize performance. The finale method has excellent sensitivity, accuracy and precision (limit of detection: ≤0.2 pg/µL, relative error: ≤±10%, relative standard deviation: <10%), and was well suited for measuring 20 µL amounts of Krebs buffer containing insulin secreted from islet organoids.publishedVersio

    The Effect of Wnt Pathway Modulators on Human iPSC-Derived Pancreatic Beta Cell Maturation

    Get PDF
    Current published protocols for targeted differentiation of human stem cells toward pancreatic β-cells fail to deliver sufficiently mature cells with functional properties comparable to human islet β-cells. We aimed to assess whether Wnt-modulation could promote the final protocol stages of β-cell maturation, building our hypothesis on our previous findings of Wnt activation in immature hiPSC-derived stage 7 (S7) cells compared to adult human islets and with recent data reporting a link between Wnt/PCP and in vitro β-cell maturation. In this study, we stimulated canonical and non-canonical Wnt signaling in hiPSC-derived S7 cells using syntetic proteins including WNT3A, WNT4, WNT5A and WNT5B, and we inhibited endogenous Wnt signaling with the Tankyrase inhibitor G007-LK (TKi). Whereas neither canonical nor non-canonical Wnt stimulation alone was able to mature hiPSC-derived S7 cells, WNT-inhibition with TKi increased the fraction of monohormonal cells and global proteomics of TKi-treated S7 cells showed a proteomic signature more similar to adult human islets, suggesting that inhibition of endogenous Wnt contributes toward final β-cell maturation

    Autologous endothelialisation by the stromal vascular fraction on laminin-bioconjugated nanocellulose-alginate scaffolds

    Get PDF
    Establishing a vascular network in biofabricated tissue grafts is essential for ensuring graft survival. Such networks are dependent on the ability of the scaffold material to facilitate endothelial cell adhesion; however, the clinical translation potential of tissue-engineered scaffolds is hindered by the lack of available autologous sources of vascular cells. Here, we present a novel approach to achieving autologous endothelialisation in nanocellulose-based scaffolds by using adipose tissue-derived vascular cells on nanocellulose-based scaffolds. We used sodium periodate-mediated bioconjugation to covalently bind laminin to the scaffold surface and isolated the stromal vascular fraction and endothelial progenitor cells (EPCs; CD31+CD45−) from human lipoaspirate. Additionally, we assessed the adhesive capacity of scaffold bioconjugation in vitro using both adipose tissue-derived cell populations and human umbilical vein endothelial cells. The results showed that the bioconjugated scaffold exhibited remarkably higher cell viability and scaffold surface coverage by adhesion regardless of cell type, whereas control groups comprising cells on non-bioconjugated scaffolds exhibited minimal cell adhesion across all cell types. Furthermore, on culture day 3, EPCs seeded on laminin-bioconjugated scaffolds showed positive immunofluorescence staining for the endothelial markers CD31 and CD34, suggesting that the scaffolds promoted progenitor differentiation into mature endothelial cells. These findings present a possible strategy for generating autologous vasculature and thereby increase the clinical relevance of 3D-bioprinted nanocellulose-based constructs

    SIMON: A Digital Protocol to Monitor and Predict Suicidal Ideation

    Full text link
    Each year, more than 800,000 persons die by suicide, making it a leading cause of death worldwide. Recent innovations in information and communication technology may offer new opportunities in suicide prevention in individuals, hereby potentially reducing this number. In our project, we design digital indices based on both self-reports and passive mobile sensing and test their ability to predict suicidal ideation, a major predictor for suicide, and psychiatric hospital readmission in high-risk individuals: psychiatric patients after discharge who were admitted in the context of suicidal ideation or a suicidal attempt, or expressed suicidal ideations during their intake. Specifically, two smartphone applications -one for self-reports (SIMON-SELF) and one for passive mobile sensing (SIMON-SENSE)- are installed on participants' smartphones. SIMON-SELF uses a text-based chatbot, called Simon, to guide participants along the study protocol and to ask participants questions about suicidal ideation and relevant other psychological variables five times a day. These self-report data are collected for four consecutive weeks after study participants are discharged from the hospital. SIMON-SENSE collects behavioral variables -such as physical activity, location, and social connectedness- parallel to the first application. We aim to include 100 patients over 12 months to test whether (1) implementation of the digital protocol in such a high-risk population is feasible, and (2) if suicidal ideation and psychiatric hospital readmission can be predicted using a combination of psychological indices and passive sensor information. To this end, a predictive algorithm for suicidal ideation and psychiatric hospital readmission using various learning algorithms (e.g., random forest and support vector machines) and multilevel models will be constructed. Data collected on the basis of psychological theory and digital phenotyping may, in the future and based on our results, help reach vulnerable individuals early and provide links to just-in-time and cost-effective interventions or establish prompt mental health service contact. The current effort may thus lead to saving lives and significantly reduce economic impact by decreasing inpatient treatment and days lost to inability

    Multilocus sequence analysis reveals different lineages of Pseudomonas anguilliseptica associated with disease in farmed lumpfish (Cyclopterus lumpus L.)

    Get PDF
    The bacterium Pseudomonas anguilliseptica has in recent years emerged as a serious threat to production of lumpfish in Norway. Little is known about the population structure of this bacterium despite its association with disease in a wide range of different fish species throughout the world. The phylogenetic relationships between 53 isolates, primarily derived from diseased lumpfish, but including a number of reference strains from diverse geographical origins and fish species, were reconstructed by Multi-Locus Sequence Analysis (MLSA) using nine housekeeping genes (rpoB, atpD, gyrB, rpoD, ileS, aroE, carA, glnS and recA). MLSA revealed a high degree of relatedness between the studied isolates, altough the seven genotypes identified formed three main phylogenetic lineages. While four genotypes were identified amongst Norwegian lumpfish isolates, a single genotype dominated, irrespective of geographic origin. This suggests the existence of a dominant genotype associated with disease in production of lumpfish in Norwegian aquaculture. Elucidation of the population structure of the bacterium has provided valuable information for potential future vaccine development.publishedVersio

    Potential anti-inflammatory role of activin A in acute coronary syndromes

    Get PDF
    AbstractObjectivesWe sought to investigate whether activin A could be involved in the immunopathogenesis of acute coronary syndromes.BackgroundInflammatory mechanisms seem to play a pathogenic role in atherosclerosis and acute coronary syndromes, but the actual mediators have not been fully identified. Activin A, a pleiotropic member of the transforming growth factor-beta cytokine family, has recently been suggested to play a role in inflammation.MethodsWe examined the role of activin A and its endogenous inhibitor follistatin in patients with stable (n = 26) and unstable angina (n = 20) and healthy control subjects (n = 20) by different experimental approaches.Results1) Patients with stable angina had raised activin A concentrations, as assessed by protein levels in serum and messenger ribonucleic acid levels in peripheral blood mononuclear cells (PBMCs). 2) Although several activin A–related mediators were upregulated in PBMCs from patients with stable angina compared with controls (i.e., activin A and Smad3), no changes or even downregulation (i.e., Smad2) were seen in unstable disease. 3) The activin type II receptors, representing the primary ligand-binding proteins, were downregulated in unstable compared with stable angina. 4) Percutaneous coronary intervention induced a decrease in the activin A/follistatin ratio, suggesting downregulatory effects on activin A activity. 5) Although activin A dose-dependently suppressed the release of inflammatory cytokines from PBMCs in angina patients, an opposite effect was found in healthy controls.ConclusionsOur findings suggest an anti-inflammatory potential of activin A in angina patients, and such effects may be of particular relevance in unstable angina in which several of the activin parameters were downregulated

    Calcium : A Crucial Potentiator for Efficient Enzyme Digestion of the Human Pancreas

    Get PDF
    Background: Effective digestive enzymes are crucial for successful islet isolation. Supplemental proteases are essential because they synergize with collagenase for effective pancreatic digestion. The activity of these enzymes is critically dependent on the presence of Ca2+ ions at a concentration of 5-10 mM. The present study aimed to determine the Ca2+ concentration during human islet isolation and to ascertain whether the addition of supplementary Ca2+ is required to maintain an optimal Ca2+ concentration during the various phases of the islet isolation process. Methods: Human islets were isolated according to standard methods and isolation parameters. Islet quality control and the number of isolations fulfilling standard transplantation criteria were evaluated. Ca2+ was determined by using standard clinical chemistry routines. Islet isolation was performed with or without addition of supplementary Ca2+ to reach a Ca2+ of 5 mM. Results: Ca2+ concentration was markedly reduced in bicarbonate-based buffers, especially if additional bicarbonate was used to adjust the pH as recommended by the Clinical Islet Transplantation Consortium. A major reduction in Ca2+ concentration was also observed during pancreatic enzyme perfusion, digestion, and harvest. Additional Ca2+ supplementation of media used for dissolving the enzymes and during digestion, perfusion, and harvest was necessary in order to obtain the concentration recommended for optimal enzyme activity and efficient liberation of a large number of islets from the human pancreas. Conclusions: Ca2+ is to a large extent consumed during clinical islet isolation, and in the absence of supplementation, the concentration fell below that recommended for optimal enzyme activity. Ca2+ supplementation of the media used during human pancreas digestion is necessary to maintain the concentration recommended for optimal enzyme activity. Addition of Ca2+ to the enzyme blend has been implemented in the standard isolation protocols in the Nordic Network for Clinical Islet Transplantation.Peer reviewe

    Validation of Visual and Auditory Digital Markers of Suicidality in Acutely Suicidal Psychiatric Inpatients: Proof-of-Concept Study

    Full text link
    BACKGROUND Multiple symptoms of suicide risk have been assessed based on visual and auditory information, including flattened affect, reduced movement, and slowed speech. Objective quantification of such symptomatology from novel data sources can increase the sensitivity, scalability, and timeliness of suicide risk assessment. OBJECTIVE We aimed to examine measurements extracted from video interviews using open-source deep learning algorithms to quantify facial, vocal, and movement behaviors in relation to suicide risk severity in recently admitted patients following a suicide attempt. METHODS We utilized video to quantify facial, vocal, and movement markers associated with mood, emotion, and motor functioning from a structured clinical conversation in 20 patients admitted to a psychiatric hospital following a suicide risk attempt. Measures were calculated using open-source deep learning algorithms for processing facial expressivity, head movement, and vocal characteristics. Derived digital measures of flattened affect, reduced movement, and slowed speech were compared to suicide risk with the Beck Scale for Suicide Ideation controlling for age and sex, using multiple linear regression. RESULTS Suicide severity was associated with multiple visual and auditory markers, including speech prevalence (β=-0.68, P=.02, r2^{2}=0.40), overall expressivity (β=-0.46, P=.10, r2^{2}=0.27), and head movement measured as head pitch variability (β=-1.24, P=.006, r2^{2}=0.48) and head yaw variability (β=-0.54, P=.06, r2^{2}=0.32). CONCLUSIONS Digital measurements of facial affect, movement, and speech prevalence demonstrated strong effect sizes and linear associations with the severity of suicidal ideation

    LIGHT/TNFSF14 is increased in patients with type 2 diabetes mellitus and promotes islet cell dysfunction and endothelial cell inflammation in vitro

    Get PDF
    Published version. Source at http://dx.doi.org/10.1007/s00125-016-4036-y Aims/hypothesis: Activation of inflammatory pathways is involved in the pathogenesis of type 2 diabetes mellitus. On the basis of its role in vascular inflammation and in metabolic disorders, we hypothesised that the TNF superfamily (TNFSF) member 14 (LIGHT/TNFSF14) could be involved in the pathogenesis of type 2 diabetes mellitus. Methods: Plasma levels of LIGHT were measured in two cohorts of type 2 diabetes mellitus patients (191 Italian and 40 Norwegian). Human pancreatic islet cells and arterial endothelial cells were used to explore regulation and relevant effects of LIGHT in vitro. Results: Our major findings were: (1) in both diabetic cohorts, plasma levels of LIGHT were significantly raised compared with sex- and age-matched healthy controls (n = 32); (2) enhanced release from activated platelets seems to be an important contributor to the raised LIGHT levels in type 2 diabetes mellitus; (3) in human pancreatic islet cells, inflammatory cytokines increased the release of LIGHT and upregulated mRNA and protein levels of the LIGHT receptors lymphotoxin β receptor (LTβR) and TNF receptor superfamily member 14 (HVEM/TNFRSF14); (4) in these cells, LIGHT attenuated the insulin release in response to high glucose at least partly via pro-apoptotic effects; and (5) in human arterial endothelial cells, glucose boosted inflammatory response to LIGHT, accompanied by an upregulation of mRNA levels of HVEM (also known as TNFRSF14) and LTβR (also known as LTBR). Conclusions/interpretation: Our findings show that patients with type 2 diabetes mellitus are characterised by increased plasma LIGHT levels. Our in vitro findings suggest that LIGHT may contribute to the progression of type 2 diabetes mellitus by attenuating insulin secretion in pancreatic islet cells and by contributing to vascular inflammation
    corecore