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Abstract
Aims/hypothesis Activation of inflammatory pathways is
involved in the pathogenesis of type 2 diabetes mellitus. On
the basis of its role in vascular inflammation and in metabolic
disorders, we hypothesised that the TNF superfamily
(TNFSF) member 14 (LIGHT/TNFSF14) could be involved
in the pathogenesis of type 2 diabetes mellitus.
Methods Plasma levels of LIGHT were measured in two
cohorts of type 2 diabetes mellitus patients (191 Italian and
40 Norwegian). Human pancreatic islet cells and arterial
endothelial cells were used to explore regulation and relevant
effects of LIGHT in vitro.
Results Our major findings were: (1) in both diabetic cohorts,
plasma levels of LIGHT were significantly raised compared

with sex- and age-matched healthy controls (n = 32);
(2) enhanced release from activated platelets seems to be an
important contributor to the raised LIGHT levels in type 2
diabetes mellitus; (3) in human pancreatic islet cells, inflam-
matory cytokines increased the release of LIGHT and upreg-
ulated mRNA and protein levels of the LIGHT receptors
lymphotoxin β receptor (LTβR) and TNF receptor superfam-
ily member 14 (HVEM/TNFRSF14); (4) in these cells,
LIGHT attenuated the insulin release in response to high glu-
cose at least partly via pro-apoptotic effects; and (5) in human
arterial endothelial cells, glucose boosted inflammatory
response to LIGHT, accompanied by an upregulation of
mRNA levels of HVEM (also known as TNFRSF14) and
LTβR (also known as LTBR).
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Conclusions/interpretation Our findings show that patients
with type 2 diabetes mellitus are characterised by increased
plasma LIGHT levels. Our in vitro findings suggest that
LIGHT may contribute to the progression of type 2 diabetes
mellitus by attenuating insulin secretion in pancreatic islet
cells and by contributing to vascular inflammation.
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Abbreviations
EIA Enzyme immunoassay
GAPDH Glyceraldehyde 3-phosphate

dehydrogenase
GSIS Glucose-stimulated insulin secretion
HAEC Human arterial endothelial cell
HVEM/
TNFRSF14

TNF receptor superfamily member 14

LIGHT/
TNFSF14

TNF superfamily member 14

LTβR Lymphotoxin β receptor
MCP-1 Monocyte chemoattractant protein 1
PAR-2 Protease-activated receptor 2
PBMC Peripheral blood mononuclear cell
PHA Phytohaemagglutinin
PIC Proinflammatory cytokine cocktail
PRP Platelet-rich plasma
TNFSF TNF superfamily

Introduction

Type 2 diabetes mellitus is associated with accelerated athero-
genesis, resulting in premature ischaemic manifestations of
coronary, cerebrovascular and peripheral arterial disease,
which contribute greatly to the increased morbidity and mor-
tality in these patients [1, 2]. Inflammation seems to promote
increased insulin resistance and impaired beta cell function in
the pancreas, and inflammatory mediators also contribute to
vascular pathology and accelerated atherogenesis in this dis-
order [1–3]. The identification of the relevant inflammatory
mediators in these processes is, however, not fulfilled.

TNF superfamily (TNFSF) member 14 (LIGHT/
TNFSF14) is a cytokine in the TNFSF [4], signalling through
TNF receptor superfamily member 14 (HVEM/TNFRSF14)
and the lymphotoxin β receptor (LTβR) [3, 4]. LIGHT is
primarily expressed on T cells and dendritic cells, but has also
been found in platelets, monocytes and granulocytes, being
involved in innate and adaptive immunity as well as in the
regulation of cell survival and proliferation [4, 5]. Studies in
animal models and some clinical studies indicate that LIGHT
may be crucial for the development of various inflammatory

disorders [6, 7], and it has also been implicated in the patho-
genesis of atherosclerosis and vascular inflammation [8, 9].
Recently, LIGHT has been shown to regulate lipid homeosta-
sis [10] and has been associated with obesity, potentially
through promotion of inflammatory responses in adipocytes
[11, 12]. LIGHT has also been implicated in the immune-
mediated beta cell destruction in diabetes [13], but data on
the involvement of LIGHT in type 2 diabetes mellitus are
scarce.

Based on its role in vascular inflammation and its recently
discovered role in metabolic disorders, we hypothesised that
LIGHT could be involved in the pathogenesis of type 2 dia-
betes mellitus. This hypothesis was investigated by various
experimental approaches, including clinical studies in patients
with type 2 diabetes mellitus and experimental studies in
human pancreatic islet cells and human arterial endothelial
cells (HAECs).

Methods

Participants

Italian cohort A cohort of 191 patients (87 women, 104 men;
mean age 65± 8 years) with type 2 diabetes mellitus were
enrolled at the Diabetes Clinic of Chieti University Hospital
from 2008 to 2011, as previously described [14] (Table 1).
Exclusion criteria were: (1) clinically significant hepatic,
renal, cardiac or pulmonary insufficiency; (2) history of malig-
nant neoplasms (diagnosed and treated within the last 5 years);
(3) autoimmune disorders and type 1 diabetes mellitus; (4) a
recent history (<6 months) of thrombotic events, pregnancy or
lactation; and (5) regular use of estroprogestin, iron, antioxi-
dants, non-steroidal anti‐inflammatory drugs or antiplatelet
agents other than aspirin (acetylsalicylic acid [ASA]). Of the
diabetic patients, 94 were treated with low‐dose aspirin
(100 mg/day) for the prevention of primary or secondary car-
diovascular events. Diabetic patients with arterial hypertension
or hypercholesterolaemia were included if well controlled with
stable drug therapy: 108 (56.5%) had arterial hypertension and
134 (70.2%) were hypercholesterolaemic in accordance with
Adult Treatment Panel (ATP) III criteria.

Norwegian cohort A cohort of 40 Norwegian participants
> 18 years of age (27 men, mean age 58 years) with type 2
diabetes mellitus were enrolled, regardless of type of
glucose-lowering treatment, at the Diabetes Research
Laboratory, Oslo University Hospital, from 2010 to 2012
(Table 2). Exclusion criteria included HbA1c > 11%
(97 mmol/mol), BMI > 45 kg/m2, malignancy, history of
kidney stones, cardiovascular disease during the last 6months,
GFR < 30 ml min−1 1.73 m−2, BP > 160/100 mmHg and
chronic inflammatory disease in the active phase [15].
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Seventeen patients (42.5%) were treated with low‐dose aspirin
for the prevention of primary or secondary cardiovascular

events. Patients with arterial hypertension (n=35 [87.5%])
or hypercholesterolaemia (n=34 [85.0%]) according to the

Table 1 Baseline characteristics
of the Italian type 2 diabetic
patients

Variables Patients with type 2 diabetes

All (n= 191) Not taking aspirin
(n = 97)

Taking aspirin
(n= 94)

p valuea

Men, n (%) 104 (54.4) 47 (48.5) 57 (60.6) 0.11

Age, median (IQR), years 65 (60–70) 64 (59–70) 66.0 (61–69) 0.139

BMI (kg/m2) 28.1 (25.1–31.1) 28.7 (25.3–32) 28.1 (24.8–30.8) 0.191

Diabetes duration, years 5 (1–11.5) 1 (1–7.2) 7 (3–20) <0.0001

Smoking 4 (2.1) 1 (1.0) 3 (3.2) 0.084

Diabetes duration > 1 year, n (%) 111 (58.1) 39 (40.2) 72 (76.6) <0.0001

Systolic BP (mmHg) 135 (125–140) 130.5 (120–145) 135 (130–140) 0.354

Diastolic BP (mmHg) 80 (70–85) 80 (76–90) 80 (70–82) 0.017

Fasting plasma glucose (mmol/l) 7.44 (6.55–8.5) 7.72 (6.77–9.51) 7.11 (6.16–8.27) 0.006

HbA1c (mmol/mol) 52 (46–58) 52 (46–56) 52 (46–61) 0.603

HbA1c (%) 6.9 (6.4–7.5) 6.9 (6.4–7.3) 6.9 (6.4–7.7) 0.603

Hypertension, n (%) 108 (56.5) 48 (49.5) 60 (63.8) 0.002

Hypercholesterolaemia, n (%) 134 (70.2) 63 (64.9) 71 (75.5) 0.112

Total cholesterol (mmol/l) 4.93 (4.31–5.64) 4.96 (4.49–5.68) 4.78 (4.00–5.45) 0.038

HDL-cholesterol (mmol/l) 1.25 (1.04–1.49) 1.31 (1.11–1.52) 1.21 (0.98–1.45) 0.086

Triacylglycerols (mmol/l) 1.39 (0.96–1.93) 1.50 (1.00–2.09) 1.34 (0.90–1.89) 0.233

LDL-cholesterol (mmol/l) 2.88 (2.31–3.46) 2.96 (2.43–3.49) 2.72 (2.17–3.43) 0.125

Microvascular complications, n (%) 28 (14.7) 8 (8.2) 20 (21.3) 0.002

Macrovascular complications, n (%) 38 (19.9) 3 (3.1) 35 (37.2) <0.0001

Previous MI, n (%) 7 (3.7) 0 (0) 7 (7.4) 0.001

Previous stroke, n (%) 3 (1.6) 0 (0) 3 (3.2) 0.052

Previous TIA, n (%) 5 (2.6) 0 (0) 5 (5.3) 0.006

Carotid stenosis, n (%) 6 (3.1) 0 (0) 6 (6.4) 0.006

Medical treatment

Statin, n (%) 52 (27.2) 15 (15.5) 37 (39.4) <0.0001

Metformin, n (%) 73 (38.2) 28 (28.9) 45 (47.9) 0.007

PPAR-γ, n (%) 11 (5.8) 1 (1.03) 10 (10.6) 0.009

Sulfonylurea, n (%) 38 (19.9) 13 (13.4) 25 (26.6) 0.036

Insulin, n (%) 18 (9.4) 4 (4.1) 14 (14.9) 0.021

Glinide, n (%) 8 (4.2) 0 (0) 8 (8.5) 0.006

Incretin, n (%) 0 (0) 0 (0) 0 –

Ezetimibe, n (%) 1 (0.5) 1 (1.0) 0 (0) 1.000

Fibrate, n (%) 4 (2.1) 0 (0) 4 (4.3) 0.057

PUFA, n (%) 8 (4.2) 2 (2.1) 6 (6.4) 0.167

ACE inhibitor, n (%) 47 (24.6) 23 (23.7) 24 (25.5) 0.862

ARB, n (%) 31 (16.2) 10 (10.3) 21 (22.3) 0.027

Diuretic, n (%) 32 (16.8) 13 (13.4) 19 (20.2) 0.237

β-blocker, n (%) 22 (11.5) 5 (5.2) 17 (18.1) 0.006

CCA, n (%) 23 (12.0) 11 (11.3) 12 (12.8) 0.824

PPI, n (%) 21 (11) 4 (4.1) 17 (18.1) 0.016

a By Mann–Whitney, χ2 or Fisher’s exact test, as appropriate

ACE, angiotensin-converting enzyme; ARB, angiotensin receptor blocker; CCA, calcium channel blocker; IQR,
interquartile range; PPAR-γ, peroxisome proliferator-activated receptor γ; PUFA, polyunsaturated fatty acids;
MI, myocardial infarction; PPI, proton pump inhibitor; TIA, transient ischaemic attack
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ATP III criteria were included if well controlled with stable
drug therapy.

Diabetes diagnosis In both cohorts the diagnosis of type 2
diabetes mellitus was based on the American Diabetes
Association guidelines [16]. Type 1 diabetes mellitus was
suspected and excluded with islet autoantibody evaluation
(i.e. GAD autoantibodies, islet antigen 2 [IA-2] antibodies,
insulin autoantibodies) when one of the following applied:
family history of type 1 diabetes mellitus, age < 40 years, lean
phenotype or precocious requirement for insulin therapy. In

the Norwegian cohort, anti-GAD and anti-IA-2 were measured
in all participants. No patients were diagnosed clinically as
having maturity onset diabetes of the young.

Control The LIGHT levels in both cohorts were compared
with LIGHT levels in 32 sex- and age-matched healthy
Norwegian individuals (mean age 64±5 years, 17 men and
15 women), based on disease history and clinical evaluation.

Consent Written informed consent was obtained from each
individual participating in the studies. The local ethics com-
mittees approved the protocols in both Italy and Norway.

Biochemical measurements See the electronic supplementa-
ry material (ESM) Methods for details of biochemical mea-
surements carried out in both cohorts.

Human islet isolation

Human islets were isolated using a modified semi-automated
digestion method [17] from nine male and female brain-dead
donors aged 35–65 years provided by the islet isolation facil-
ity of the Nordic Network in Uppsala, Sweden, or at the islet
isolation facility Oslo University Hospital in Norway after
appropriate consent was given for multi-organ donation.
Islet purity ranged between 70% and 90% as judged by
dithizone staining, but the islet preparations were disqualified
for clinical transplantation because of quantitative insufficien-
cy. The cells were handpicked ensuring morphologically sim-
ilar islets and exclusion of exocrine tissue. Descriptions of
human islet culture and glucose-stimulated insulin secretion
(GSIS) in human islet cells are given in the ESM Methods.

Human arterial endothelial cell culture and stimulation

See ESM Methods for details.

Isolation of peripheral blood mononuclear cells

Human peripheral blood mononuclear cells (PBMCs) were
isolated from heparinised blood from seven patients with type
2 diabetes and six healthy controls by Isopaque Ficoll
(Lymphoprep; Nycomed, Oslo, Norway) gradient centrifuga-
tion. Methodological details are given in the ESM Methods.

Real-time quantitative RT-PCR

See the ESM Methods for details.

Western blot

In human islets, western blotting was performed for protein
analysis of LTβR, HVEM and glyceraldehyde 3-phosphate

Table 2 Baseline characteristics of the Norwegian type 2 diabetic pa-
tients (n = 40)

Variable Median (IQR) or n (%)

Men, n (%) 27 (67.5)

Age (years) 58 (50–65)

BMI (kg/m2) 32.7 (28.9–36.6)

Diabetes duration, years 9 (3–15)

Smoking n (%) 10 (25.0)

Diabetes duration > 1 year, n (%) 39 (97.5)

Systolic BP (mmHg) 126 (121–137)

Diastolic BP (mmHg) 83 (80–92)

Fasting plasma glucose (mmol/l)a 8.86 (7.29–11.80)

HbA1c (%) 7.3 (6.6–8.1)

HbA1c (mmol/mol) 56 (49–65)

Hypertension, n (%) 35 (87.5)

Hypercholesterolaemia, n (%) 34 (85.0)

Total cholesterol (mmol/l) 4.10 (3.43–4.73)

HDL-cholesterol (mmol/l) 1.03 (0.82–1.20)

Triacylglycerols (mmol/l) 1.30 (0.90–1.80)

LDL-cholesterol (mmol/l) 2.30 (1.80–2.85)

Microvascular complications, n (%)b 6 (15.0)

Macrovascular complications, n (%)b 5 (12.5)

Medical treatment

Statin, n (%) 27 (67.5)

Metformin, n (%) 27 (67.5)

PPAR-γ, n (%) 0 (0)

Sulfonylurea, n (%) 7 (17.5)

Insulin, n (%) 14 (35)

Glinide, n (%) 0 (0)

Incretin, n (%) 7 (17.5)

Ezetimibe, n (%) 0 (0)

Fibrate, n (%) 0 (0)

BP-lowering agent, n (%) 29 (72.9)

Aspirin, n (%) 17 (42.5)

a All patients had stopped oral glucose-lowering treatment 48 h before test
and insulin 24 h before test
b Self-reported complications

IQR, interquartile range; PPAR-γ, peroxisome proliferator-activated re-
ceptor γ
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dehydrogenase (GAPDH). Methodological details are given
in the ESM methods.

Determination of beta cell death

Islet cell death was analysed by detection of DNA-histone
complexes in the cytoplasmic fraction of cell lysates using a
Cell Death Detection enzyme immunoassay (EIA) kit (Roche
Diagnostics, Mannheim, Germany). See the ESM Methods
for details.

Preparation and culturing of platelet-rich plasma (PRP)

Preparation of citrated PRP was performed as described in the
ESM Methods.

EIAs

Levels of LIGHT in plasma, PBMC supernatants and PRP,
and levels of IL-8 and monocyte chemoattractant protein 1
(MCP-1/CCL2) in HAEC supernatants, were measured by
EIAs from R&D Systems (Abingdon, UK).

Statistical methods

Differences in LIGHT levels were compared with the Mann–
Whitney U test. If more than two groups were compared, the
Kruskal–Wallis test was used a priori. Associations between
LIGHT levels and clinical variables were analysed by
Spearman’s rank correlation test or linear regression on log-
transformed measures as necessary (normality assessed by the
Kolmogorov–Smirnov test) prior to inclusion in stepwise
regression. Data from in vitro studies were compared using
the Mann–Whitney U test or Student’s t test as appropriate or
Wilcoxon signed rank test for paired analysis. The p values are
two-sided and considered significant when <0.05.

Results

Increased plasma levels of LIGHT in patients with type 2
diabetes mellitus

Plasma levels of LIGHT were significantly raised in 191 pa-
tients with type 2 diabetes mellitus (Italian cohort) compared
with 32 age- and sex-matched healthy controls (Fig. 1a).
Within the Italian cohort, LIGHTwas significantly correlated
with glycaemic control as assessed by fasting plasma glucose
(r= 0.27, p = 0.001; Fig. 1b) and HbA1c levels (r= 0.22,
p<0.006; Fig. 1c). When the patients were stratified accord-
ing to time since diagnosis (≤1 year [n= 42], 2–9 years
[n=43] and ≥ 10years [n=40]), there was a gradual increase
in LIGHT levels according to disease duration (ESM Fig. 1).
However, whereas these three groups are comparable for most
of the clinical characteristics, they were different in relation to
age, ongoing aspirin treatment and glucose-lowering medica-
tion (ESM Table 1), weakening the impact of the association
between LIGHT and disease duration.

We aimed to replicate our findings in another type 2 diabe-
tes mellitus cohort by measuring plasma LIGHT levels in 40
patients with this disorder recruited at Oslo University
Hospital. As in the Italian cohort, the Norwegian cohort had
significantly raised plasma levels of LIGHT compared with
the 32 age- and sex-matched healthy controls (Fig. 1d). We
were, however, not able to confirm the association between
LIGHT and disease duration (r=−0.23, p=0.18), fasting glu-
cose (r=0.09, p=0.58) or HbA1c (r=0.27, p=0.18) in the
Norwegian population, potentially reflecting that the Italian
population was larger (n=191) and phenotypically different.
Indeed, only one out of 40 of the patients in the Norwegian
cohort had disease duration < 1 year compared with 80 out of
191 in the Italian cohort. Moreover, the Norwegian population
had higher BMI, longer disease duration and higher HbA1c

and fasting glucose (Tables 1 and 2). It is possible that the
correlation with LIGHT and glycaemic control is attenuated
in more advanced disease.

Fig. 1 Circulating LIGHT levels in type 2 diabetes mellitus. (a) Plasma
levels of LIGHT in 191 Italian type 2 diabetes patients and 32 healthy
controls. (b, c) Correlations between plasma LIGHT levels and fasting
glucose (b) and HbA1c (c). (d) Plasma levels of LIGHT in 40 Norwegian
type 2 diabetes mellitus patients and 32 healthy controls. Correlations are

given as Pearsons r between log10-transformed values while box plots
represent median and 25th and 75th percentiles. The Mann–Whitney U
test was used to compare patients and controls. **p < 0.01 vs controls.
Ctrl, controls; DM, diabetic group
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Platelets from type 2 diabetes mellitus spontaneously
increase LIGHT release

Platelets are known as a cellular source of LIGHT in plasma
[5] and, as shown in Fig. 2a, platelets (i.e. PRP) from patients
with type 2 diabetes mellitus (n=7) spontaneously released a
significantly higher amount of LIGHT than platelets from
healthy controls (n=6) after both 10 and 90 min incubations.
Based on plasma concentrations (∼15–25 pg/ml), these data
suggest that platelets are an important cellular source of circu-
lating LIGHT levels in our type 2 diabetes mellitus cohorts. In
the Italian cohort, we previously measured urinary
11-dehydro-TXB2 excretion rate and soluble CD40 ligand
(sCD40L) as markers of platelet activation [14]; both vari-
ables were correlated with plasma levels of LIGHT
(r=0.035, p=0.055 and r=0.277, p=0.001, respectively),
further supporting a link between platelet activation and cir-
culating LIGHT levels. Somewhat surprisingly, however,
there was no difference in LIGHT level between those who
were treated with aspirin and those who were not in
either the Italian cohort (median [25th–75th percentile]:
21.8 [15.3–43.7] pg/ml vs 24.1 [14.4–56.7] pg/ml,
p= 0.91, aspirin users [n= 94] and non-users [97], respec-
tively) or the Norwegian cohort (11.7 [10.0–19.2] pg/ml
vs 12.6 [11.0–16.3] pg/ml, aspirin users [n=17] and non-users
[n=23], respectively).

Activated PBMCs release large amount of LIGHT

Activated T cells and monocytes are important cellular
sources of LIGHT [7] and, as shown in Fig. 2b,
phytohaemagglutinin (PHA)-activated PBMCs released a
large amount of LIGHT with the same pattern in type 2 dia-
betes mellitus patients (n=7) and controls (n=6). Whereas
these results are not relevant for the circulating LIGHT levels
in our diabetes cohorts, they could be relevant to the release of
LIGHT from infiltrating T cells and monocytes within the
vessel wall and pancreas in type 2 diabetes mellitus patients.

LIGHTand its receptors are upregulated
by inflammatory stimuli in human pancreatic islet cells

To further elucidate the association of LIGHT with type 2
diabetes mellitus, we examined the regulation and effects
of LIGHT in human pancreatic islet cells. Inflammation,

Fig. 2 Release of LIGHT from platelets and PBMCs. (a) The spontane-
ous release of LIGHT in PRP from seven patients with type 2 diabetes
mellitus (grey bars, Norwegian cohort) and six healthy controls (white
bars). (b, c) The release of LIGHT in unstimulated PBMCs (white bars)
and PBMCs stimulated with phytohaemagglutinin (PHA; 20 μg/ml, grey

bars) after culturing for 20 h (b) and 48 h (c) in the same individuals as in
(a). The Mann–Whitney U test was used to compare patients and healthy
controls (a) and Wilcoxon signed rank test to compare PHA-stimulated
and unstimulated cells (b, c). *p < 0.05 and **p < 0.01. DM, diabetic
group
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and in particular IL-1β, has been implicated in the path-
ogenesis of beta cell dysfunction in type 2 diabetes
mellitus [3, 18]. Therefore, the cells were co-stimulated
with a proinflammatory cytokine cocktail (PIC) of IL-1β
(10 ng/ml), TNF (10 ng/ml) and IFN-γ (50 ng/ml) (see
ESM Methods). This mixture of inflammatory stimuli sig-
nificantly enhanced the release of LIGHT into cell super-
natant fractions and markedly upregulated the mRNA
levels of the two LIGHT receptors HVEM (also known
as TNFRSF14) and LTβR (also known as LTBR) without
any significant effect on LIGHT (also known as
TNFSF14) mRNA levels after culturing for 24 h
(Fig. 3a, b). This increase in HVEM and LTβR expression
in PIC-exposed islets was also seen at the protein level, as
determined by western blotting (Fig. 3c).

LIGHT reduces insulin release and increases cell death
in human islets

To elucidate the potential functional consequences of
increased LIGHT/HVEM/LTβR expression in pancreatic islet
cells, we examined the effects of LIGHT on insulin secretion
in response to low (1.67 mmol/l) and high (20 mmol/l) glu-
cose exposure. Whereas LIGHT increased insulin secretion in
response to low glucose levels in a dose-dependent manner,
LIGHT markedly inhibited insulin secretion in response to
high glucose concentration (Fig. 4a, left). In fact, whereas high
glucose levels induced a marked increase in insulin secretion
compared with low glucose levels in unstimulated cells, the
difference between high and low glucose exposure was nearly
absent in LIGHT-stimulated (1000 ng/ml) cells. PIC induced a
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bation at 1.67 mmol/l (white bars), followed by 1 h incubation at
20 mmol/l glucose (black bars). Insulin secretion was measured in the
respective supernatant fractions by ELISA (a) and calculated as the stim-
ulation index (b) as detailed in ESM Methods. Cell death in LIGHT-

exposed cells (1000 ng/ml, 48 h) was measured by Cell Death ELISA
(c) and viability by fluorescent membrane integrity assay with fluorescein
diacetate/propidium iodide (FDA/PI) staining of the same islets visualised
by fluorescence microscopy, with bright-field images of the islets shown
in the bottom row (d). Data are presented as mean ± SEM (n = 3–9).
*p < 0.05, **p < 0.01 and ***p < 0.001 vs low glucose (a) or
unstimulated cells (b); †p < 0.05 vs low glucose without LIGHT. All
comparisons were made using the Mann–Whitney U test. Unstim,
unstimulated
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similar pattern as LIGHT, with minor differences in insulin
release when comparing low and high glucose exposure with
no additional effect of LIGHT (Fig. 4a, right). These patterns
were also seen when the response was calculated as insulin stim-
ulation index (i.e. the ratio of stimulated [high glucose exposure]
to basal [low glucose exposure] insulin secretion) (Fig. 4b), with
the suppressive effects of LIGHT being in the same order as
those of the inflammatory cytokine cocktail (∼60% reduction).
LIGHT has been shown to trigger apoptosis in various tumour
cells [19] and, indeed, LIGHT-exposed islet cells show enhanced
apoptosis as assessed by Cell Death ELISA (Fig. 4c) as well as
enhanced propidium iodide staining (Fig. 4d).

Glucose enhanced the inflammatory effects of LIGHT
in HAECs

Vascular inflammation is an important complication of type 2
diabetes mellitus [2], and we and others have shown that
LIGHT activates inflammatory responses in endothelial cells
[5, 9, 20]. We therefore next examined the regulation of the
two LIGHT receptors and the effect of LIGHT on inflamma-
tory responses in HAECs with and without glucose exposure.
First, LIGHT, especially when combined with glucose
(10 mmol/l), markedly enhanced the expression of LTβR
mRNA (Fig. 5a). Second, while glucose (10 mmol/l) and
LIGHT (200 ng/ml) had no effect on HVEM expression, the
combination of these stimuli induced a modest but significant
effect onHVEMmRNA levels after culturing for 3 h (Fig. 5b).
Third, pre-incubation of HAECs with glucose (10 mmol/l)
and LIGHT (200 ng/ml) for 6 h resulted in the release of
significantly higher levels of IL-8 and MCP-1, two prototyp-
ical endothelial-derived inflammatory chemokines, when the
cells were further stimulated with LIGHT for an additional
24 h compared with cells pre-incubated with glucose or
LIGHT alone (Fig. 5c, d). This finding suggests that glucose
could enhance the LIGHT-mediated inflammatory response in
arterial endothelial cells, potentially via a mechanism involv-
ing upregulation of its receptors in these cells.

Discussion

In the present study we show that, as confirmed in two inde-
pendent cohorts, the TNFSF member LIGHT is significantly
increased in type 2 diabetes mellitus, potentially reflecting
enhanced release from platelets in these patients. The
LIGHT receptors HVEM and LTβR were found to be upreg-
ulated in pancreatic islet cells by inflammatory cytokines, and
LIGHT itself attenuated the insulin release from these cells
when exposed to high glucose levels via a mechanism that,
at least partly, involved LIGHT-induced apoptosis of pancre-
atic islet cells. Finally, glucose boosted the inflammatory
response of LIGHT in arterial endothelial cells, potentially

through upregulation of the LIGHT receptors. Our findings
suggest that LIGHT could be involved in the development
and progression of type 2 diabetes mellitus and its complica-
tions, including the development of vascular inflammation via
an inflammatory loop between platelets, endothelial cells,
mononuclear blood cells and pancreatic islet cells that has
LIGHT as an important link (Fig. 6).

LIGHT is involved in both innate and adaptive immune
responses [4], and has been linked to various inflammatory
and autoimmune disorders [6, 7, 21] Additionally, LIGHT has
been shown to increase the uptake of modified lipids in mac-
rophages [22], and induce hypertriglycerolaemia through
inhibition of hepatic lipoprotein lipase [10]. LIGHT has also
been linked to obesity in experimental models [11], contribut-
ing to metabolic-induced inflammation [12]. In experimental
mice models, LIGHT has been associated with pancreatic islet
cell apoptosis [13] and the development of diabetes through
mediation of recruitment and activation of T cells into the
islets [23]. Soluble LTβR has been shown to reverse sponta-
neous autoimmune insulitis in non-obese diabetic mice [24].
However, data on LIGHT in human diabetic disorders are

Fig. 5 LIGHT increases the inflammatory potential of glucose-stimulat-
ed HAEC cells. HAECs were stimulated for 3 h (a, b) or 6 h (c, d) with
either LIGHT (200 ng/ml), D-glucose (10mmol/l) or a combination there-
of. Gene expression of the LTβR (a) and HVEM (b) were examined by
qPCR and data are given in relation to the control geneβ-actin. The levels
of IL-8 (c) and MCP-1 (d) were assessed in cell supernatant fractions by
ELISA. (c, d) The cells were pretreated for 6 h as described above,
followed by incubation with LIGHT (200 ng/ml) for 24 h. The medium
was changed before the last incubation with LIGHT for 24 h. In all
experiments, unstimulated cells received vehicle. Data are presented as
mean ± SEM (n = 4–6). *p < 0.05, **p < 0.01 and ***p < 0.001 vs
unstimulated cells (Student’s t test). †p < 0.05, ††p < 0.01 and
†††p < 0.001 vs glucose or LIGHT alone. Gluc, glucose; Unstim,
unstimulated
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scarce. Dandona et al reported raised LIGHT levels in a small
cohort of 38 obese patients with no relation to type 2 diabetes
mellitus [25]. Herein, we show increased LIGHT levels in
individuals with type 2 diabetes mellitus compared with
healthy controls as confirmed in two independent cohorts of
191 and 40 type 2 diabetes mellitus patients. Moreover, we
show that soluble LIGHT and its receptors, HVEM and
LTβR, are upregulated in pancreatic islet cells when the cells
are exposed to inflammatory cytokines. Our findings further
underscore a link between inflammation and type 2 diabetes
mellitus, and show that LIGHT could be added to the list of
mediators in the pathogenic loop between hyperglycaemia
and inflammation in this disorder.

LIGHT is strongly expressed by activated T cells [4], and
herein we show that activated PBMCs release a large amount
of LIGHT. Several LIGHT-associated effects seem to be
mediated by its membrane-bound form, in particular on Tcells
[10, 26]. Indeed, experimental studies on LIGHT and pancre-
atic islet cell pathology have focused on the membrane-bound

LIGHT on T cells [23, 24]. However, Han et al showed that
recombinant LIGHT could induce islet cell apoptosis in an
experimental mouse model of islet cell transplantation [13].
Here, we show that soluble LIGHTcan also affect the function
of human islet cells. Thus, soluble LIGHT impaired insulin
release when these cells were exposed to high glucose levels,
potentially involving LIGHT-induced depletion of insulin
when these cells are exposed to low levels of glucose as well
as LIGHT-induced apoptosis of pancreatic islet cells. Thus,
we can speculate that increased LIGHT levels in the pancre-
atic environment may alter the glucose dependence of insulin
secretion, with excessive and unrequired insulin secretion in
response to low glucose concentration and attenuated
response to high glucose concentration.

We have previously shown that platelet-derived LIGHT is a
potent inducer of inflammatory responses in endothelial cells
[5]. Herein, we show that platelets from type 2 diabetes
mellitus patients spontaneously release higher levels of
LIGHT than platelets from healthy controls, and were an

Fig. 6 Hypothetical bidirectional
interaction between glucose and
LIGHT in type 2 diabetes
mellitus. (a) The pancreas is
heavily vascularised because of
its function as sensor of blood
glucose. In the circulation,
platelets release LIGHT, as well
as other cytokines, which exerts
its effects through its receptors,
HVEM and LTβR, on the
endothelium, causing vascular
inflammation. High glucose and
increased PAR-2 expression
increase the potency of LIGHT.
When activated, the endothelium
recruits T cells and monocytes/
macrophages that release a large
amount of LIGHT. (b) On
inflammatory stimulation,
pancreatic islets produce LIGHT
accompanied with increased
production of HVEM and LTβR.
Recruited T cells and monocytes/
macrophages also contribute to
increased LIGHT levels. During
high glucose exposure, LIGHT
attenuates insulin release
involving LIGHT-induced
apoptosis of pancreatic islet cells,
further contributing to
hyperglycaemia. Thus, LIGHT
could be part of a vicious circle
leading to progression of type 2
diabetes mellitus. Mϕ,
macrophage
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important cellular source of plasma levels of LIGHT in our
diabetic cohorts. While the amount of LIGHT release from
platelets may seem low, we have previously shown that when
combined with other inflammatory mediators that are released
from activated platelets, platelet-derived LIGHT has a signif-
icant impact on endothelial cell activation [5]. Activated T
cells and monocytes are important cellular sources of
LIGHT and herein we show that PHA-activated PBMCs
release a large amount of LIGHT. Whereas these results are
not relevant for the circulating LIGHT levels, they could be
relevant to the release of LIGHT from infiltrating T cells and
monocytes within the vessel wall or pancreatic islet cells.
Thus, based on our experiments, both activated platelets that
adhere to the vascular endothelium and infiltrating mono-
nuclear cells could contribute to LIGHT-mediated vascu-
lar and pancreatic islet cell inflammation in type 2 dia-
betes mellitus. We have previously shown that activation
of protease-activated receptor 2 (PAR-2) enhances the
LIGHT-induced inflammatory responses in endothelial
cells [9]. Interestingly, experimental studies suggest that
PAR-2 is upregulated and show enhanced stimulatory
responses in endothelial cells in diabetic mice [27, 28].
If a similar regulation of PAR-2 is also seen in type 2
diabetes mellitus, it will further enhance the inflammato-
ry effect of LIGHT in these patients.

The present study has some limitations. The correla-
tion of LIGHT with glycaemic control was found only in
the large Italian cohort. The lack of data on insulin se-
cretion as a fraction of the total insulin amount (content
in islet + media) is another limitation. Nonetheless, our
findings show that type 2 diabetes mellitus patients are
characterised by increased plasma levels of LIGHT, and
our in vitro findings suggest that LIGHT could contribute
to the progression of this disorder by attenuating insulin
secretion in pancreatic islet cells and by contributing to
vascular inflammation.
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