1,012 research outputs found
Recommended from our members
Increasing phenological asynchrony between spring green-up and arrival of migratory birds
Consistent with a warming climate, birds are shifting the timing of their migrations, but it remains unclear to what extent these shifts have kept pace with the changing environment. Because bird migration is primarily cued by annually consistent physiological responses to photoperiod, but conditions at their breeding grounds depend on annually variable climate, bird arrival and climate-driven spring events would diverge. We combined satellite and citizen science data to estimate rates of change in phenological interval between spring green-up and migratory arrival for 48 breeding passerine species across North America. Both arrival and green-up changed over time, usually in the same direction (earlier or later). Although birds adjusted their arrival dates, 9 of 48 species did not keep pace with rapidly changing green-up and across all species the interval between arrival and green-up increased by over half a day per year. As green-up became earlier in the east, arrival of eastern breeding species increasingly lagged behind green-up, whereas in the west—where green-up typically became later—birds arrived increasingly earlier relative to green-up. Our results highlight that phenologies of species and trophic levels can shift at different rates, potentially leading to phenological mismatches with negative fitness consequences
Is manganese-doped diamond a ferromagnetic semiconductor?
We use density-functional theoretical methods to examine the recent
prediction, based on a mean-field solution of the Zener model, that diamond
doped by Mn (with spin S=5/2) would be a dilute magnetic semiconductor that
remains ferromagnetic well above room temperature. Our findings suggest this to
be unlikely, for four reasons: (1) substitutional Mn in diamond has a low-spin
S=1/2 ground state; (2) the substitutional site is energetically unfavorable
relative to the much larger "divacancy" site; 3) Mn in the divacancy site is an
acceptor, but with only hyperdeep levels, and hence the holes are likely to
remain localized; (4) the calculated Heisenberg couplings between Mn in nearby
divacancy sites are two orders of magnitude smaller than for substitutional Mn
in germanium.Comment: 5 pages, 5 figure
Ferromagnetism in Mn doped GaAs due to substitutional-interstitial complexes
While most calculations on the properties of the ferromagnetic semiconductor
GaAs:Mn have focussed on isolated Mn substituting the Ga site (Mn), we
investigate here whether alternate lattice sites are favored and what the
magnetic consequences of this might be. Under As-rich (Ga-poor) conditions
prevalent at growth, we find that the formation energies are lower for
Mn over interstitial Mn (Mn).As the Fermi energy is shifted towards
the valence band maximum via external -doping, the formation energy of
Mn is reduced relative to Mn. Furthermore, under epitaxial growth
conditions, the solubility of both substitutional and interstitial Mn are
strongly enhanced over what is possible under bulk growth conditions. The high
concentration of Mn attained under epitaxial growth of p-type material opens
the possibility of Mn atoms forming small clusters. We consider various types
of clusters, including the Coulomb-stabilized clusters involving two Mn
and one Mn. While isolated Mn are hole killers (donors), and therefore
destroy ferromagnetism,complexes such as Mn-Mn-Mn) are found
to be more stable than complexes involving Mn-Mn-Mn. The
former complexes exhibit partial or total quenching of holes, yet Mn in
these complexes provide a channel for a ferromagnetic arrangement of the spins
on the two Mn within the complex. This suggests that ferromagnetism in
Mn doped GaAs arises both from holes due to isolated Mn as well as from
strongly Coulomb stabilized Mn-Mn-Mn clusters.Comment: 7 figure
Encoded Recoupling and Decoupling: An Alternative to Quantum Error Correcting Codes, Applied to Trapped Ion Quantum Computation
A recently developed theory for eliminating decoherence and design
constraints in quantum computers, ``encoded recoupling and decoupling'', is
shown to be fully compatible with a promising proposal for an architecture
enabling scalable ion-trap quantum computation [D. Kielpinski et al., Nature
417, 709 (2002)]. Logical qubits are encoded into pairs of ions. Logic gates
are implemented using the Sorensen-Molmer (SM) scheme applied to pairs of ions
at a time. The encoding offers continuous protection against collective
dephasing. Decoupling pulses, that are also implemented using the SM scheme
directly to the encoded qubits, are capable of further reducing various other
sources of qubit decoherence, such as due to differential dephasing and due to
decohered vibrational modes. The feasibility of using the relatively slow SM
pulses in a decoupling scheme quenching the latter source of decoherence
follows from the observed 1/f spectrum of the vibrational bath.Comment: 12 pages, no figure
Cell shape analysis of random tessellations based on Minkowski tensors
To which degree are shape indices of individual cells of a tessellation
characteristic for the stochastic process that generates them? Within the
context of stochastic geometry and the physics of disordered materials, this
corresponds to the question of relationships between different stochastic
models. In the context of image analysis of synthetic and biological materials,
this question is central to the problem of inferring information about
formation processes from spatial measurements of resulting random structures.
We address this question by a theory-based simulation study of shape indices
derived from Minkowski tensors for a variety of tessellation models. We focus
on the relationship between two indices: an isoperimetric ratio of the
empirical averages of cell volume and area and the cell elongation quantified
by eigenvalue ratios of interfacial Minkowski tensors. Simulation data for
these quantities, as well as for distributions thereof and for correlations of
cell shape and volume, are presented for Voronoi mosaics of the Poisson point
process, determinantal and permanental point processes, and Gibbs hard-core and
random sequential absorption processes as well as for Laguerre tessellations of
polydisperse spheres and STIT- and Poisson hyperplane tessellations. These data
are complemented by mechanically stable crystalline sphere and disordered
ellipsoid packings and area-minimising foam models. We find that shape indices
of individual cells are not sufficient to unambiguously identify the generating
process even amongst this limited set of processes. However, we identify
significant differences of the shape indices between many of these tessellation
models. Given a realization of a tessellation, these shape indices can narrow
the choice of possible generating processes, providing a powerful tool which
can be further strengthened by density-resolved volume-shape correlations.Comment: Chapter of the forthcoming book "Tensor Valuations and their
Applications in Stochastic Geometry and Imaging" in Lecture Notes in
Mathematics edited by Markus Kiderlen and Eva B. Vedel Jense
Adaptive periodicity in the infectivity of malaria gametocytes to mosquitoes
Daily rhythms in behaviour, physiology, and molecular processes are expected to enable organisms to appropriately schedule activities according to consequences of the daily rotation of the Earth. For parasites, this includes capitalizing on periodicity in transmission opportunities and for hosts/vectors, this may select for rhythms in immune defence. We examine rhythms in the density and infectivity of transmission forms (gametocytes) of rodent malaria parasites in the host’s blood, parasite development inside mosquito vectors, and potential for onwards transmission. Furthermore, we simultaneously test whether mosquitoes exhibit rhythms in susceptibility. We reveal that at night, gametocytes are twice as infective, despite being less numerous in the blood. Enhanced infectiousness at night interacts with mosquito rhythms to increase sporozoite burdens four-fold when mosquitoes feed during their rest phase. Thus, changes in mosquito biting time (due to bed nets) may render gametocytes less infective, but this is compensated for by the greater mosquito susceptibility
Placing high-redshift quasars in perspective: A catalog of spectroscopic properties from the gemini near infrared spectrograph-distant quasar survey
We present spectroscopic measurements for 226 sources from the Gemini Near Infrared Spectrograph-Distant Quasar Survey (GNIRS-DQS). Being the largest uniform, homogeneous survey of its kind, it represents a fluxlimited sample (mi≤19.0 mag, H≤16.5 mag) of Sloan Digital Sky Survey (SDSS) quasars at 1.5 ≤ z ≤ 3.5 with a monochromatic luminosity (λLλ) at 5100 Ã… in the range of 1044-1046 erg s-1. A combination of the GNIRS and SDSS spectra covers principal quasar diagnostic features, chiefly the C IV λ1549, Mg II λλ2798, 2803, Hβ λ4861, and [O III] λλ4959, 5007 emission lines, in each source. The spectral inventory will be utilized primarily to develop prescriptions for obtaining more accurate and precise redshifts, black hole masses, and accretion rates for all quasars. Additionally, the measurements will facilitate an understanding of the dependence of rest-frame ultraviolet-optical spectral properties of quasars on redshift, luminosity, and Eddington ratio, and test whether the physical properties of the quasar central engine evolve over cosmic time.Fil: Matthews, Brandon M.. University of North Texas; Estados UnidosFil: Shemmer, Ohad. University of North Texas; Estados UnidosFil: Dix, Cooper. University of North Texas; Estados UnidosFil: Brotherton, Michael S.. University of Wyoming; Estados UnidosFil: Myers, Adam D.. University of Wyoming; Estados UnidosFil: Andruchow, Ileana. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Centro CientÃfico Tecnológico Conicet - La Plata. Instituto de AstrofÃsica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y GeofÃsicas. Instituto de AstrofÃsica La Plata; ArgentinaFil: Brandt, W.N.. State University of Pennsylvania; Estados UnidosFil: Ferrero, Gabriel A.. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y GeofÃsicas; ArgentinaFil: Gallagher, S.C.. The University Of Western Ontario; CanadáFil: Green, Richard. University of Arizona; Estados UnidosFil: Lira, Paulina. Universidad de Chile.; ChileFil: Plotkin, Richard M.. University of Nevada. Deparment of Physics; Estados UnidosFil: Richards, Gordon T.. Drexel University; Estados UnidosFil: Runnoe, Jessie C.. Vanderbilt University; Estados UnidosFil: Schneider, Donald P.. State University of Pennsylvania; Estados UnidosFil: Shen, Yue. University of Illinois at Urbana; Estados UnidosFil: Strauss, Michael A.. University of Princeton; Estados UnidosFil: Wills, Beverley J.. University of Texas at Austin; Estados Unido
The Kuiper Belt and Other Debris Disks
We discuss the current knowledge of the Solar system, focusing on bodies in
the outer regions, on the information they provide concerning Solar system
formation, and on the possible relationships that may exist between our system
and the debris disks of other stars. Beyond the domains of the Terrestrial and
giant planets, the comets in the Kuiper belt and the Oort cloud preserve some
of our most pristine materials. The Kuiper belt, in particular, is a
collisional dust source and a scientific bridge to the dusty "debris disks"
observed around many nearby main-sequence stars. Study of the Solar system
provides a level of detail that we cannot discern in the distant disks while
observations of the disks may help to set the Solar system in proper context.Comment: 50 pages, 25 Figures. To appear in conference proceedings book
"Astrophysics in the Next Decade
- …