19 research outputs found

    Structural Basis of Outstanding Multivalent Effects in Jack Bean α-Mannosidase Inhibition

    Get PDF
    Multivalent design of glycosidase inhibitors is a promising strategy for the treatment of diseases involving enzymatic hydrolysis of glycosidic bonds in carbohydrates. An essential prerequisite for successful applications is the atomic‐level understanding of how outstanding binding enhancement occurs with multivalent inhibitors. Herein we report the first high‐resolution crystal structures of the Jack bean α‐mannosidase (JBα‐man) in apo and inhibited states. The three‐dimensional structure of JBα‐man in complex with the multimeric cyclopeptoid‐based inhibitor displaying the largest binding enhancements reported so far provides decisive insight into the molecular mechanisms underlying multivalent effects in glycosidase inhibition.Instituto de FĂ­sica de LĂ­quidos y Sistemas BiolĂłgico

    A First-Order SCA Resistant AES without Fresh Randomness

    Get PDF
    Since the advent of Differential Power Analysis (DPA) in the late 1990s protecting embedded devices against Side-Channel Analysis (SCA) attacks has been a major research effort. Even though many different first-order secure masking schemes are available today, when applied to the AES S-box they all require fresh random bits in every evaluation. As the quality criteria for generating random numbers on an embedded device are not well understood, an integrated Random Number Generator (RNG) can be the weak spot of any protected implementation and may invalidate an otherwise secure implementation. We present a new construction based on Threshold Implementations and Changing of the Guards to realize a first-order secure AES with zero per-round randomness. Hence, our design does not need a built-in RNG, thereby enhancing security and reducing the overhead

    Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b

    Full text link
    Hot Jupiters are among the best-studied exoplanets, but it is still poorly understood how their chemical composition and cloud properties vary with longitude. Theoretical models predict that clouds may condense on the nightside and that molecular abundances can be driven out of equilibrium by zonal winds. Here we report a phase-resolved emission spectrum of the hot Jupiter WASP-43b measured from 5-12 ÎŒ\mum with JWST's Mid-Infrared Instrument (MIRI). The spectra reveal a large day-night temperature contrast (with average brightness temperatures of 1524±\pm35 and 863±\pm23 Kelvin, respectively) and evidence for water absorption at all orbital phases. Comparisons with three-dimensional atmospheric models show that both the phase curve shape and emission spectra strongly suggest the presence of nightside clouds which become optically thick to thermal emission at pressures greater than ~100 mbar. The dayside is consistent with a cloudless atmosphere above the mid-infrared photosphere. Contrary to expectations from equilibrium chemistry but consistent with disequilibrium kinetics models, methane is not detected on the nightside (2σ\sigma upper limit of 1-6 parts per million, depending on model assumptions).Comment: 61 pages, 13 figures, 4 tables. This preprint has been submitted to and accepted in principle for publication in Nature Astronomy without significant change

    Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b

    Get PDF
    Hot Jupiters are among the best-studied exoplanets, but it is still poorly understood how their chemical composition and cloud properties vary with longitude. Theoretical models predict that clouds may condense on the nightside and that molecular abundances can be driven out of equilibrium by zonal winds. Here we report a phase-resolved emission spectrum of the hot Jupiter WASP-43b measured from 5-12 ÎŒm with JWST's Mid-Infrared Instrument (MIRI). The spectra reveal a large day-night temperature contrast (with average brightness temperatures of 1524±35 and 863±23 Kelvin, respectively) and evidence for water absorption at all orbital phases. Comparisons with three-dimensional atmospheric models show that both the phase curve shape and emission spectra strongly suggest the presence of nightside clouds which become optically thick to thermal emission at pressures greater than ~100 mbar. The dayside is consistent with a cloudless atmosphere above the mid-infrared photosphere. Contrary to expectations from equilibrium chemistry but consistent with disequilibrium kinetics models, methane is not detected on the nightside (2σ upper limit of 1-6 parts per million, depending on model assumptions)

    Vaccine breakthrough hypoxemic COVID-19 pneumonia in patients with auto-Abs neutralizing type I IFNs

    Full text link
    Life-threatening `breakthrough' cases of critical COVID-19 are attributed to poor or waning antibody response to the SARS- CoV-2 vaccine in individuals already at risk. Pre-existing autoantibodies (auto-Abs) neutralizing type I IFNs underlie at least 15% of critical COVID-19 pneumonia cases in unvaccinated individuals; however, their contribution to hypoxemic breakthrough cases in vaccinated people remains unknown. Here, we studied a cohort of 48 individuals ( age 20-86 years) who received 2 doses of an mRNA vaccine and developed a breakthrough infection with hypoxemic COVID-19 pneumonia 2 weeks to 4 months later. Antibody levels to the vaccine, neutralization of the virus, and auto- Abs to type I IFNs were measured in the plasma. Forty-two individuals had no known deficiency of B cell immunity and a normal antibody response to the vaccine. Among them, ten (24%) had auto-Abs neutralizing type I IFNs (aged 43-86 years). Eight of these ten patients had auto-Abs neutralizing both IFN-a2 and IFN-., while two neutralized IFN-omega only. No patient neutralized IFN-ss. Seven neutralized 10 ng/mL of type I IFNs, and three 100 pg/mL only. Seven patients neutralized SARS-CoV-2 D614G and the Delta variant (B.1.617.2) efficiently, while one patient neutralized Delta slightly less efficiently. Two of the three patients neutralizing only 100 pg/mL of type I IFNs neutralized both D61G and Delta less efficiently. Despite two mRNA vaccine inoculations and the presence of circulating antibodies capable of neutralizing SARS-CoV-2, auto-Abs neutralizing type I IFNs may underlie a significant proportion of hypoxemic COVID-19 pneumonia cases, highlighting the importance of this particularly vulnerable population

    Bambus[4,6]urils as Dual Scaffolds for Multivalent Iminosugar Presentation and Ion Transport: Access to Unprecedented Glycosidase-Directed Anion Caging Agents

    No full text
    Bambusurils, BU[4] and BU[6], were used for the first time as multivalent scaffolds to link glycosidases inhibitors derived from 1-deoxynojirimycin (DNJ). Two linear DNJ ligands having six or nine carbon alkyl azido linkers or a trivalent DNJ dendron were grafted onto octapropargylated BU[4] and dodecapropargylated BU[6] using copper-catalyzed cycloaddition (CuAAC) to yield corresponding neoglycobambus[4] and neoglycobambus[6]urils bearing 8 to 24 iminosugars. The inhibition potencies of neoglycoBU[4], neoglycoBU[6] and neoglycoBU[6] caging anions were evaluated against Jack Bean α-mannosidase and compared to monovalent DNJ derivatives. Strong affinity enhancements per inhibitory head were obtained for the clusters holding trivalent dendrons with inhibitory constants in the nanomolar range (Ki = 24 nM for BU[4] with 24 DNJ units). Interestingly, the anion (bromide or iodide) encapsulated inside the cavity of BU[6] does not modify the inhibition potency of neoglycoBU[6], opening the way to water-soluble glycosidase-directed anion caging agents that may find applications in important fields such as bio(in)organic chemistry or oncology

    Hybrid Multivalent Jack Bean α-Mannosidase Inhibitors: The First Example of Gold Nanoparticles Decorated with Deoxynojirimycin Inhitopes

    No full text
    Among carbohydrate-processing enzymes, Jack bean α-mannosidase (JBα-man) is the glycosidase with the best responsiveness to the multivalent presentation of iminosugar inhitopes. We report, in this work, the preparation of water dispersible gold nanoparticles simultaneously coated with the iminosugar deoxynojirimycin (DNJ) inhitope and simple monosaccharides (ÎČ-d-gluco- or α-d-mannosides). The display of DNJ at the gold surface has been modulated (i) by using an amphiphilic linker longer than the aliphatic chain used for the monosaccharides and (ii) by presenting the inhitope, not only in monomeric form, but also in a trimeric fashion through combination of a dendron approach with glyconanotechnology. The latter strategy resulted in a strong enhancement of the inhibitory activity towards JBα-man, with a Ki in the nanomolar range (Ki = 84 nM), i.e., more than three orders of magnitude higher than the monovalent reference compound

    Structural Basis of Outstanding Multivalent Effects in Jack Bean α-Mannosidase Inhibition

    Get PDF
    Multivalent design of glycosidase inhibitors is a promising strategy for the treatment of diseases involving enzymatic hydrolysis of glycosidic bonds in carbohydrates. An essential prerequisite for successful applications is the atomic-level understanding of how outstanding binding enhancement occurs with multivalent inhibitors. Herein we report the first high-resolution crystal structures of the Jack bean α-mannosidase (JBα-man) in apo and inhibited states. The three-dimensional structure of JBα-man in complex with the multimeric cyclopeptoid-based inhibitor displaying the largest binding enhancements reported so far provides decisive insight into the molecular mechanisms underlying multivalent effects in glycosidase inhibition

    Construction of giant glycosidase inhibitors from iminosugar-substituted fullerene macromonomers

    No full text
    An ultra-fast synthetic procedure based on grafting of twelve fullerene macromonomers onto a fullerene hexa-adduct core was used for the preparation of a giant molecule with 120 peripheral iminosugar residues. The inhibition profile of this giant iminosugar ball was evaluated against various glycosidases. In the particular case of the Jack bean α-mannosidase, a dramatic enhancement of the glycosidase inhibitory effect was observed for the giant molecule with 120 peripheral subunits as compared to that of the corresponding mono- and dodecavalent model compounds.We acknowledge the financial support from the Spanish Ministerio de EconomĂ­a y Competitividad (MINECO; contracts SAF2016-76083-R and CTQ2015-64425-C2-1-R), the Junta de AndalucĂ­a (contract FQM2012-1467), the CITIUS, the Biomolecular Interactions Platform (CicCartuja), the CNRS, the University of Strasbourg, the International Center for Frontier Research in Chemistry and the LabEx “Chimie des SystĂšmes Complexes”
    corecore