851 research outputs found
Holocene land-sea climatic links on the equatorial Pacific coast (Bay of Guayaquil, Ecuador)
Copyright © 2015 SAGE PublicationsWe analyzed the pollen content of a marine core located near the bay of Guayaquil in Ecuador to document the link between sea surface temperatures (SST) and changes in rainfall regimes on the adjacent continent during the Holocene. Based on the expansion/regression of five vegetation types, we observe three successive climatic patterns. In the first phase, between 11,700 and 7700 cal yr BP, the presence of a cloud (Andean) forest in the mid altitudes and mangroves in the estuary of the Guayas Basin, were associated with a maximum in boreal summer insolation, a northernmost position of the Intertropical Convergence Zone (ITCZ), a land- sea thermal contrast, and dryness. Between 7700 and 2850 cal yr BP, the expansion of the coastal herbs and the regression of the mangrove indicate a drier climate with weak ITCZ and low ENSO variability while austral winter insolation gradually increased. The interval between 4200 and 2850 cal yr BP was marked by the coolest and driest climatic conditions of the Holocene due to the weak influence of the ITCZ and a strengthening of the Humboldt Current. After 2850 cal yr BP, high variability and amplitude of the Andean forest changes occurred when ENSO frequency and amplitude increased, indicating high variability in land-sea connections. The ITCZ reached the latitude of Guayaquil only after 2500 cal yr BP inducing the bimodal precipitation regime we observe today. Our study shows that besides insolation, the ITCZ position and ENSO frequency, changes in eastern equatorial Pacific SSTs play a major role in determining the composition of the ecosystems and the hydrological cycle of the Ecuadorian Pacific coast and the Western Cordillera in Ecuador.Deutsche ForschungsgemeinschaftFrench Research Agenc
Neutrino Halos in Clusters of Galaxies and their Weak Lensing Signature
We study whether non-linear gravitational effects of relic neutrinos on the
development of clustering and large-scale structure may be observable by weak
gravitational lensing. We compute the density profile of relic massive
neutrinos in a spherical model of a cluster of galaxies, for several neutrino
mass schemes and cluster masses. Relic neutrinos add a small perturbation to
the mass profile, making it more extended in the outer parts. In principle,
this non-linear neutrino perturbation is detectable in an all-sky weak lensing
survey such as EUCLID by averaging the shear profile of a large fraction of the
visible massive clusters in the universe, or from its signature in the general
weak lensing power spectrum or its cross-spectrum with galaxies. However,
correctly modeling the distribution of mass in baryons and cold dark matter and
suppressing any systematic errors to the accuracy required for detecting this
neutrino perturbation is severely challenging.Comment: 13 pages, 11 figures. Submitted to JCA
Development of relativistic shock waves in viscous gluon matter
To investigate the formation and the propagation of relativistic shock waves
in viscous gluon matter we solve the relativistic Riemann problem using a
microscopic parton cascade. We demonstrate the transition from ideal to viscous
shock waves by varying the shear viscosity to entropy density ratio .
We show that an ratio larger than 0.2 prevents the development of
well-defined shock waves on time scales typical for ultrarelativistic heavy-ion
collisions. These findings are confirmed by viscous hydrodynamic calculations.Comment: 4 pages, 3 figures - To appear in the conference proceedings for
Quark Matter 2009, March 30 - April 4, Knoxville, Tennesse
Recommended from our members
Electron emission and defect formation in the interaction of slow,highly charged ions with diamond surfaces
We report on electron emission and defect formation in theinteraction between slow (v~;0.3 vBohr) highly charged ions (SHCI) withinsulating (type IIa) and semiconducting (type IIb) diamonds. Electronemission induced by 31Pq+ (q=5 to 13), and 136Xeq+ (q=34 to 44) withkinetic energies of 9 kVxq increase linearly with the ion charge states,reaching over 100 electrons per ion for high xenon charge states withoutsurface passivation of the diamond with hydrogen. Yields from bothdiamond types are up to a factor of two higher then from reference metalsurfaces. Crater like defects with diameters of 25 to 40 nm are formed bythe impact of single Xe44+ ions. High secondary electron yields andsingle ion induced defects enable the formation of single dopant arrayson diamond surfaces
Thermodynamic gauge-theory cascade
It is proposed that the cooling of a thermalized SU() gauge theory can be
formulated in terms of a cascade involving three effective theories with
successively reduced (and spontaneously broken) gauge symmetries, SU()
U(1) Z. The approach is based on the assumption that away
from a phase transition the bulk of the quantum interaction inherent to the
system is implicitly encoded in the (incomplete) classical dynamics of a
collective part made of low-energy condensed degrees of freedom. The properties
of (some of the) statistically fluctuating fields are determined by these
condensate(s). This leads to a quasi-particle description at tree-level. It
appears that radiative corrections, which are sizable at large gauge coupling,
do not change the tree-level picture qualitatively. The thermodynamic
self-consistency of the quasi-particle approach implies nonperturbative
evolution equations for the associated masses. The temperature dependence of
these masses, in turn, determine the evolution of the gauge coupling(s). The
hot gauge system approaches the behavior of an ideal gas of massless gluons at
asymptotically large temperature. A negative equation of state is possible at a
stage where the system is about to settle into the phase of the (spontaneously
broken) Z symmetry.Comment: 25 pages, 6 figures, 1 reference added, minor corrections in text,
errors in Sec. 3.2 corrected, PRD versio
A twentieth century perspective on summer Antarctic pressure change and variability and contributions from tropical SSTs and ozone depletion
During the late 20th 33 Century, the Antarctic atmospheric circulation has changed
and significantly influenced the overall Antarctic climate, through processes including a
poleward shift of the circumpolar westerlies. However, little is known about the full
spatial pattern of atmospheric pressure over the Antarctic continent prior to 1979. Here
we investigate surface pressure changes across the entire Antarctic continent back to
1905 by developing a new summer pressure reconstruction poleward of 60°S. We find
that only across East Antarctica are the recent pressures significantly lower than pressures
in the early 20th 40 century; we also discern periods of significant positive pressure trends in
the early 20th 41 century across the coastal South Atlantic sector of Antarctica. Climate
model simulations reveal that both tropical sea surface temperature variability and other
radiative forcing mechanisms, in addition to ozone depletion, have played an important
role in forcing the recent observed negative trends
Thermodynamics of the PNJL model
QCD thermodynamics is investigated by means of the Polyakov-loop-extended
Nambu Jona-Lasinio (PNJL) model, in which quarks couple simultaneously to the
chiral condensate and to a background temporal gauge field representing
Polyakov loop dynamics. The behaviour of the Polyakov loop as a function of
temperature is obtained by minimizing the thermodynamic potential of the
system. A Taylor series expansion of the pressure is performed. Pressure
difference and quark number density are then evaluated up to sixth order in
quark chemical potential, and compared to the corresponding lattice data. The
validity of the Taylor expansion is discussed within our model, through a
comparison between the full results and the truncated ones.Comment: 6 pages, 5 figures, Talk given at the Workshop for Young Scientists
on the Physics of Ultrarelativistic Nucleus-Nucleus Collisions (Hot Quarks
2006), Villasimius, Italy, 15-20 May 200
Mathematics of Gravitational Lensing: Multiple Imaging and Magnification
The mathematical theory of gravitational lensing has revealed many generic
and global properties. Beginning with multiple imaging, we review
Morse-theoretic image counting formulas and lower bound results, and
complex-algebraic upper bounds in the case of single and multiple lens planes.
We discuss recent advances in the mathematics of stochastic lensing, discussing
a general formula for the global expected number of minimum lensed images as
well as asymptotic formulas for the probability densities of the microlensing
random time delay functions, random lensing maps, and random shear, and an
asymptotic expression for the global expected number of micro-minima. Multiple
imaging in optical geometry and a spacetime setting are treated. We review
global magnification relation results for model-dependent scenarios and cover
recent developments on universal local magnification relations for higher order
caustics.Comment: 25 pages, 4 figures. Invited review submitted for special issue of
General Relativity and Gravitatio
let-7 microRNAs regulate microglial function and suppress glioma growth through Toll-like receptor 7
Microglia express Toll-like receptors (TLRs) that sense pathogen- and host-derived factors, including single-stranded RNA. In the brain, let-7 microRNA (miRNA) family members are abundantly expressed, and some have recently been shown to serve as TLR7 ligands. We investigated whether let-7 miRNA family members differentially control microglia biology in health and disease. We found that a subset of let-7 miRNA family members function as signaling molecules to induce microglial release of inflammatory cytokines, modulate antigen presentation, and attenuate cell migration in a TLR7-dependent manner. The capability of the let-7 miRNAs to control microglial function is sequence specific, mapping to a let-7 UUGU motif. In human and murine glioblastoma/glioma, let-7 miRNAs are differentially expressed and reduce murine GL261 glioma growth in the same sequence-specific fashion through microglial TLR7. Taken together, these data establish let-7 miRNAs as key TLR7 signaling activators that serve to regulate the diverse functions of microglia in health and glioma
Quasi-Particle Description of Strongly Interacting Matter: Towards a Foundation
We confront our quasi-particle model for the equation of state of strongly
interacting matter with recent first-principle QCD calculations. In particular,
we test its applicability at finite baryon densities by comparing with Taylor
expansion coefficients of the pressure for two quark flavours. We outline a
chain of approximations starting from the Phi-functional approach to QCD which
motivates the quasi-particle picture.Comment: Aug 2006. 6 pp. Invited Talk given at Hot Quarks 2006, Villasimius,
Sardinia, Italy, 15-20 May 200
- …