218 research outputs found
Interannual variation patterns of total ozone and lower stratospheric temperature in observations and model simulations
We report results from a multiple linear regression analysis of long-term total ozone observations (1979 to 2000, by TOMS/SBUV), of temperature reanalyses (1958 to 2000, NCEP), and of two chemistry-climate model simulations (1960 to 1999, by ECHAM4.L39(DLR)/CHEM (=E39/C), and MAECHAM4-CHEM). The model runs are transient experiments, where observed sea surface temperatures, increasing source gas concentrations (CO<sub>2</sub>, <i>CFC</i>s, CH<sub>4</sub>, N<sub>2</sub>O, NO<sub>x</sub>), 11-year solar cycle, volcanic aerosols and the quasi-biennial oscillation (QBO) are all accounted for. MAECHAM4-CHEM covers the atmosphere from the surface up to 0.01 hPa (≈80 km). For a proper representation of middle atmosphere (MA) dynamics, it includes a parametrization for momentum deposition by dissipating gravity wave spectra. E39/C, on the other hand, has its top layer centered at 10 hPa (≈30 km). It is targeted on processes near the tropopause, and has more levels in this region. Despite some problems, both models generally reproduce the observed amplitudes and much of the observed low-latitude patterns of the various modes of interannual variability in total ozone and lower stratospheric temperature. In most aspects MAECHAM4-CHEM performs slightly better than E39/C. MAECHAM4-CHEM overestimates the long-term decline of total ozone, whereas underestimates the decline over Antarctica and at northern mid-latitudes. The true long-term decline in winter and spring above the Arctic may be underestimated by a lack of TOMS/SBUV observations in winter, particularly in the cold 1990s. Main contributions to the observed interannual variations of total ozone and lower stratospheric temperature at 50 hPa come from a linear trend (up to -10 DU/decade at high northern latitudes, up to -40 DU/decade at high southern latitudes, and around -0.7 K/decade over much of the globe), from the intensity of the polar vortices (more than 40 DU, or 8 K peak to peak), the QBO (up to 20 DU, or 2 K peak to peak), and from tropospheric weather (up to 20 DU, or 2 K peak to peak). Smaller variations are related to the 11-year solar cycle (generally less than 15 DU, or 1 K), or to ENSO (up to 10 DU, or 1 K). These observed variations are replicated well in the simulations. Volcanic eruptions have resulted in sporadic changes (up to -30 DU, or +3 K). At low latitudes, patterns are zonally symmetric. At higher latitudes, however, strong, zonally non-symmetric signals are found close to the Aleutian Islands or south of Australia. Such asymmetric features appear in the model runs as well, but often at different longitudes than in the observations. The results point to a key role of the zonally asymmetric Aleutian (or Australian) stratospheric anti-cyclones for interannual variations at high-latitudes, and for coupling between polar vortex strength, QBO, 11-year solar cycle and ENSO
Ambient pressure x-ray photoelectron spectroscopy setup for synchrotron-based in situ and operando atomic layer deposition research
An ambient pressure cell is described for conducting synchrotron-based x-ray photoelectron spectroscopy (XPS) measurements during atomic layer deposition (ALD) processes. The instrument is capable of true in situ and operando experiments in which it is possible to directly obtain elemental and chemical information from the sample surface using XPS as the deposition process is ongoing. The setup is based on the ambient pressure XPS technique, in which sample environments with high pressure (several mbar) can be created without compromising the ultrahigh vacuum requirements needed for the operation of the spectrometer and the synchrotron beamline. The setup is intended for chemical characterization of the surface intermediates during the initial stages of the deposition processes. The SPECIES beamline and the ALD cell provide a unique experimental platform for obtaining new information on the surface chemistry during ALD half-cycles at high temporal resolution. Such information is valuable for understanding the ALD reaction mechanisms and crucial in further developing and improving ALD processes. We demonstrate the capabilities of the setup by studying the deposition of TiO2 on a SiO2 surface by using titanium(IV) tetraisopropoxide and water as precursors. Multiple core levels and the valence band of the substrate surface were followed during the film deposition using ambient pressure XPS.Peer reviewe
Resonant Lifetime of Core-Excited Organic Adsorbates from First Principles
We investigate by first-principles simulations the resonant electron-transfer
lifetime from the excited state of an organic adsorbate to a semiconductor
surface, namely isonicotinic acid on rutile TiO(110). The
molecule-substrate interaction is described using density functional theory,
while the effect of a truly semi-infinite substrate is taken into account by
Green's function techniques. Excitonic effects due to the presence of
core-excited atoms in the molecule are shown to be instrumental to understand
the electron-transfer times measured using the so-called core-hole-clock
technique. In particular, for the isonicotinic acid on TiO(110), we find
that the charge injection from the LUMO is quenched since this state lies
within the substrate band gap. We compute the resonant charge-transfer times
from LUMO+1 and LUMO+2, and systematically investigate the dependence of the
elastic lifetimes of these states on the alignment among adsorbate and
substrate states.Comment: 24 pages, 6 figures, to appear in Journal of Physical Chemistry
Interannual variation patterns of total ozone and temperature in observations and model simulations
We report results from a multiple linear regression analysis of long-term total ozone observations (1979 to 2000, by TOMS/SBUV), of temperature reanalyses (1958 to 2000, NCEP), and of two chemistry-climate model simulations (1960 to 1999, by ECHAM4.L39(DLR)/CHEM (=E39/C), and MAECHAM4-CHEM). The model runs are transient experiments, where observed sea surface temperatures, increasing source gas concentrations (CO2, CFCs, CH4, N2O, NOx), 11-year solar cycle, volcanic aerosols and the quasi-biennial oscillation (QBO) are all accounted for. MAECHAM4-CHEM covers the atmosphere from the surface up to 0.01 hPa (≈80 km). For a proper representation of middle atmosphere (MA) dynamics, it includes a parametrization for momentum deposition by dissipating gravity wave spectra. E39/C, on the other hand, has its top layer centered at 10 hPa (≈30 km). It is targeted on processes near the tropopause, and has more levels in this region. Despite some problems, both models generally reproduce the observed amplitudes and much of the observed low-latitude patterns of the various modes of interannual variability in total ozone and lower stratospheric temperature. In most aspects MAECHAM4-CHEM performs slightly better than E39/C. MAECHAM4-CHEM overestimates the long-term decline of total ozone, whereas underestimates the decline over Antarctica and at northern mid-latitudes. The true long-term decline in winter and spring above the Arctic may be underestimated by a lack of TOMS/SBUV observations in winter, particularly in the cold 1990s. Main contributions to the observed interannual variations of total ozone and lower stratospheric temperature at 50 hPa come from a linear trend (up to -10 DU/decade at high northern latitudes, up to -40 DU/decade at high southern latitudes, and around -0.7 K/decade over much of the globe), from the intensity of the polar vortices (more than 40 DU, or 8 K peak to peak), the QBO (up to 20 DU, or 2 K peak to peak), and from tropospheric weather (up to 20 DU, or 2 K peak to peak). Smaller variations are related to the 11-year solar cycle (generally less than 15 DU, or 1 K), or to ENSO (up to 10 DU, or 1 K). These observed variations are replicated well in the simulations. Volcanic eruptions have resulted in sporadic changes (up to -30 DU, or +3 K). At low latitudes, patterns are zonally symmetric. At higher latitudes, however, strong, zonally non-symmetric signals are found close to the Aleutian Islands or south of Australia. Such asymmetric features appear in the model runs as well, but often at different longitudes than in the observations. The results point to a key role of the zonally asymmetric Aleutian (or Australian) stratospheric anti-cyclones for interannual variations at high-latitudes, and for coupling between polar vortex strength, QBO, 11-year solar cycle and ENSO
Interannual variation patterns of total ozone and lower stratospheric temperature in observations and model simulations
We report results from a multiple linear regression
analysis of long-term total ozone observations (1979 to
2000, by TOMS/SBUV), of temperature reanalyses (1958
to 2000, NCEP), and of two chemistry-climate model simulations
(1960 to 1999, by ECHAM4.L39(DLR)/CHEM
(=E39/C), and MAECHAM4-CHEM). The model runs are
transient experiments, where observed sea surface temperatures,
increasing source gas concentrations (CO2, CFCs,
CH4, N2O, NOx), 11-year solar cycle, volcanic aerosols
and the quasi-biennial oscillation (QBO) are all accounted
for. MAECHAM4-CHEM covers the atmosphere from the
surface up to 0.01 hPa ( 80 km). For a proper representation
of middle atmosphere (MA) dynamics, it includes
a parametrization for momentum deposition by dissipating
gravity wave spectra. E39/C, on the other hand, has its top
layer centered at 10 hPa ( 30 km). It is targeted on processes
near the tropopause, and has more levels in this region.
Despite some problems, both models generally reproduce
the observed amplitudes and much of the observed lowlatitude
patterns of the various modes of interannual variability
in total ozone and lower stratospheric temperature. In
most aspects MAECHAM4-CHEM performs slightly better
than E39/C. MAECHAM4-CHEM overestimates the longterm
decline of total ozone, whereas E39/C underestimates
the decline over Antarctica and at northern mid-latitudes.
The true long-term decline in winter and spring above the
Correspondence to: W. Steinbrecht
([email protected])
Arctic may be underestimated by a lack of TOMS/SBUV
observations in winter, particularly in the cold 1990s. Main
contributions to the observed interannual variations of total
ozone and lower stratospheric temperature at 50 hPa come
from a linear trend (up to −10 DU/decade at high northern
latitudes, up to −40 DU/decade at high southern latitudes,
and around −0.7 K/decade over much of the globe), from
the intensity of the polar vortices (more than 40 DU, or 8 K
peak to peak), the QBO (up to 20 DU, or 2 K peak to peak),
and from tropospheric weather (up to 20 DU, or 2 K peak
to peak). Smaller variations are related to the 11-year solar
cycle (generally less than 15 DU, or 1 K), or to ENSO (up
to 10 DU, or 1 K). These observed variations are replicated
well in the simulations. Volcanic eruptions have resulted in
sporadic changes (up to −30 DU, or +3 K). At low latitudes,
patterns are zonally symmetric. At higher latitudes, however,
strong, zonally non-symmetric signals are found close
to the Aleutian Islands or south of Australia. Such asymmetric
features appear in the model runs as well, but often
at different longitudes than in the observations. The results
point to a key role of the zonally asymmetric Aleutian (or
Australian) stratospheric anti-cyclones for interannual variations
at high-latitudes, and for coupling between polar vortex
strength, QBO, 11-year solar cycle and ENSO
Interannual variation patterns of total ozone and temperature in observations and model simulations
International audienceWe report results from a multiple linear regression analysis of long-term total ozone observations (1979 to 2002, by TOMS/SBUV), of temperature reanalyses (1958 to 2002, NCEP), and of two chemistry-climate model simulations (1960 to 1999, by ECHAM4.L39(DLR)/CHEM (=E39/C), and MAECHAM4-CHEM). The model runs are transient experiments, where observed sea surface temperatures, increasing source gas concentrations (CO2, CFCs, CH4, N2O, NOx), 11-year solar cycle, volcanic aerosols and the quasi-biennial oscillation (QBO) are all accounted for. MAECHAM4-CHEM covers the atmosphere from the surface up to 0.01 hPa (?80 km). For a proper representation of middle atmosphere (MA) dynamics, it includes a parametrization for momentum deposition by dissipating gravity wave spectra. E39/C, on the other hand, has its top layer centered at 10 hPa (?30 km). It is targeted on processes near the tropopause, and has more levels in this region. Both models reproduce the observed amplitudes and much of the observed low-latitude patterns of the various modes of interannual variability, MAECHAM4-CHEM somewhat better than E39/C. Total ozone and lower stratospheric temperature show similar patterns. Main contributions to the interannual variations of total ozone and lower stratospheric temperature at 50 hPa come from a linear trend (up to ?30 Dobson Units (DU) per decade, or ?1.5 K/decade), the QBO (up to 25 DU, or 2.5 K peak to peak), the intensity of the polar vortices (up to 50 DU, or 5 K peak to peak), and from tropospheric weather (up to 30 DU, or 3 K peak to peak). Smaller variations are related to the 11-year solar cycle (generally less than 25 DU, or 2.5 K), and to ENSO (up to 15 DU, or 1.5 K). Volcanic eruptions have resulted in sporadic changes (up to ?40 DU, or +3 K). Most stratospheric variations are connected to the troposphere, both in observations and simulations. At low latitudes, patterns are zonally symmetric. At higher latitudes, however, strong, zonally non-symmetric signals are found close to the Aleutian Islands or south of Australia. Such asymmetric features appear in the model runs as well, but often at different longitudes than in the observations. The results point to a key role of the zonally asymmetric Aleutian (or Australian) stratospheric anti-cyclones for interannual variations at high- latitudes, and for coupling between polar vortex strength, QBO, 11-year solar cycle and ENSO
Technical Note: Chemistry-climate model SOCOL: version 2.0 with improved transport and chemistry/microphysics schemes
International audienceWe describe version 2.0 of the chemistry-climate model (CCM) SOCOL. The new version includes fundamental changes of the transport scheme such as transporting all chemical species of the model individually and applying a family-based correction scheme for mass conservation for species of the nitrogen, chlorine and bromine groups, a revised transport scheme for ozone, furthermore more detailed halogen reaction and deposition schemes, and a new cirrus parameterisation in the tropical tropopause region. By means of these changes the model manages to overcome or considerably reduce deficiencies recently identified in SOCOL version 1.1 within the CCM Validation activity of SPARC (CCMVal). In particular, as a consequence of these changes, regional mass loss or accumulation artificially caused by the semi-Lagrangian transport scheme can be significantly reduced, leading to much more realistic distributions of the modelled chemical species, most notably of the halogens and ozone
Uncertainties and assessments of chemistry-climate models of the stratosphere
In recent years a number of chemistry-climate models have been developed with an emphasis on the stratosphere. Such models cover a wide range of time scales of integration and vary considerably in complexity. The results of specific diagnostics are here analysed to examine the differences amongst individual models and observations, to assess the consistency of model predictions, with a particular focus on polar ozone. For example, many models indicate a significant cold bias in high latitudes, the “cold pole problem”, particularly in the southern hemisphere during winter and spring. This is related to wave propagation from the troposphere which can be improved by improving model horizontal resolution and with the use of non-orographic gravity wave drag. As a result of the widely differing modelled polar temperatures, different amounts of polar stratospheric clouds are simulated which in turn result in varying ozone values in the models.
The results are also compared to determine the possible future behaviour of ozone, with an emphasis on the polar regions and mid-latitudes. All models predict eventual ozone recovery, but give a range of results concerning its timing and extent. Differences in the simulation of gravity waves and planetary waves as well as model resolution are likely major sources of uncertainty for this issue. In the Antarctic, the ozone hole has probably reached almost its deepest although the vertical and horizontal extent of depletion may increase slightly further over the next few years. According to the model results, Antarctic ozone recovery could begin any year within the range 2001 to 2008.
The limited number of models which have been integrated sufficiently far indicate that full recovery of ozone to 1980 levels may not occur in the Antarctic until about the year 2050. For the Arctic, most models indicate that small ozone losses may continue for a few more years and that recovery could begin any year within the range 2004 to 2019. The start of ozone recovery in the Arctic is therefore expected to appear later than in the Antarctic
High-coverage structures of carbon monoxide adsorbed on Pt(111) studied by high-pressure scanning tunneling microscopy
High-pressure scanning tunneling microscopy was used to study the room-temperature adsorption of CO on a Pt(111) single-crystal surface in equilibrium with the gas phase. The coverage was found to vary continuously, and over the entire range from 10(-6)-760 Torr pressure-dependent moire patterns were observed, characteristic of a hexagonal or nearly hexagonal CO overlayer. Two different pressure ranges can be distinguished: below 10(-2) Tort, the moire lattice vector is oriented along a 30degrees high-symmetry direction of the substrate, corresponding to a pressure-dependent rotation of the CO overlayer with respect to the (1 x 1) Pt surface lattice, while above 10(-2) Torr, the CO layer angle is independent of the pressure. This behavior is analyzed in terms of the interplay of the repulsive CO-CO interaction potential and the substrate potential
- …