554 research outputs found

    Exact slip-buckling analysis of two-layer composite columns

    Get PDF
    A mathematical model for slip-buckling has been proposed and its analytical solution has been found for the analysis of layered and geometrically perfect composite columns with inter-layer slip between the layers. The analytical study has been carried out to evaluate exact critical forces and to compare them to those in the literature. Particular emphasis has been placed on the influence of interface compliance on decreasing the bifurcation loads. For this purpose, a preliminary parametric study has been performed by which the influence of various material and geometric parameters on buckling forces have been investigated. (C) 2009 Elsevier Ltd. All rights reserved

    Fire analysis of timber composite beams with interlayer slip

    Get PDF
    The purpose of this paper is to model the behaviour of timber composite beams with interlayer slip, when simultaneously exposed to static loading and fire. A transient moisture-thermal state of a timber beam is analysed by the Luikov equations, and mechanical behaviour of timber composite beam is modelled by Reissner's kinematic equations. The model can handle layers of different materials. Material properties are functions of temperature. The thermal model is validated against the experimental data presented in the literature. Generally, the model provides excellent agreement with the experimental data. It is shown that the material properties of timber play an important role in the fire resistance analysis of timber structures when exposed to fire

    Particle bombardment as a strategy for the production of transgenic high oleic sunflower (Helianthus annuus L.)

    Get PDF
    In order to develop an efficient and reproducible protocol for genetic engineering of high oleic Helianthus annuus L. genotypes (cv. capella and SWSR2 inbred line) important parameters of a particle bombardment strategy have been optimized, such as gold particle size, particle acceleration pressure, distance between macrocarrier assembly and target plate, pre-culture period of the explant and number of bombardments per explant. These parameters were evaluated on the basis of resulting GUS activity coupled with regeneration frequency and efficiency as well as plant cell vitality. Split shoot apices were used as explants. The maximum GUS activity was observed at 1550 psi acceleration pressure combined with 6 cm target distance and 1.6 ÎŒm gold particle size. A pre-culture of one day prior to bombardment gave the best results. In addition, two subsequent bombardments increased the GUS activity of cv.capella and SWSR2 inbred line 1.6 and 2.1 fold, respectively, compared to explants bombarded once. The optimized bombardment conditions were applied for estimating the transformation frequency which reached 3.1 and 4.5 % for high oleic cv.capella and SWSR2 inbred line, respectively. This frequency was calculated on the basis of positive PCR results of putative transgenic plants and in relation to the total number of bombarded explants.Abbreviations: MUG – 4-methylumbelliferyl-ß-glucuronide; 4-MU – 4-methylumbelliferone; BAP – 6-benzylaminopurine; gus – ÎČ- glucuronidase; MS – Murashige and Skoog; nos – nopaline synthase gene; nptII – neomycin phosphotransferase gene; psi – pounds per square inch; SE – standard error; SIM – shoot induction mediu

    Generating Erler-Schnabl-type Solution for Tachyon Vacuum in Cubic Superstring Field Theory

    Full text link
    We study a new set of identity-based solutions to analyze the problem of tachyon condensation in open bosonic string field theory and cubic superstring field theory. Even though these identity-based solutions seem to be trivial, it turns out that after performing a suitable gauge transformation, we are left with the known Erler-Schnabl-type solutions which correctly reproduce the value of the D-brane tension. This result shows explicitly that how a seemingly trivial solution can generate a non-trivial configuration which precisely represents to the tachyon vacuum.Comment: 22 pages, references added, appendix added, 2 subsections adde

    Locking-free two-layer Timoshenko beam element with interlayer slip

    Get PDF
    A new locking-free strain-based finite element formulation for the numerical treatment of linear static analysis of two-layer planar composite beams with interlayer slip is proposed. In this formulation, the modified principle of virtual work is introduced as a basis for the finite element discretization. The linear kinematic equations are included into the principle by the procedure, similar to that of Lagrangian multipliers. A strain field vector remains the only unknown function to be interpolated in the finite element implementation of the principle. In contrast with some of the displacement-based and mixed finite element formulations of the composite beams with interlayer slip, the present formulation is completely locking-free. Hence, there are no shear and slip locking, poor convergence and stress oscillations in these finite elements. The generalization of the composite beam theory with the consideration of the Timoshenko beam theory for the individual component of a composite beam represents a substantial contribution in the field of analysis of non-slender composite beams with an interlayer slip. An extension of the present formulation to the non-linear material problems is straightforward. As only a few finite elements are needed to describe a composite beam with great precision, the new finite element formulations is perfectly suited for practical calculations. (c) 2007 Elsevier B.V. All rights reserved

    Analytical solution of two-layer beam taking into account interlayer slip and shear deformation

    Get PDF
    A mathematical model is proposed and its analytical solution derived for the analysis of the geometrically and materially linear two-layer beams with different material and geometric characteristics of an individual layer. The model takes into account the effect of the transverse shear deformation on displacements in each layer. The analytical study is carried out to evaluate the influence of the transverse shear deformation on the static and kinematic quantities. We study a simply supported two-layer planar beam subjected to the uniformly distributed load. Parametric studies have been performed to investigate the influence of shear by varying material and geometric parameters, such as interlayer slip modulus (K), flexural-to-shear moduli ratios (E/G) and span-to-depth ratios (L/h). The comparison of the results for vertical deflections shows that shear deformations are more important for high slip modulus, for ``short'' beams with small L/h ratios, and beams with high E/G ratios. In these cases, the effect of the shear deformations becomes significant and has to be addressed in design. It also becomes apparent that models, which consider the partial interaction between the layers, should be employed if beams have very flexible connections

    Boundary State from Ellwood Invariants

    Full text link
    Boundary states are given by appropriate linear combinations of Ishibashi states. Starting from any OSFT solution and assuming Ellwood conjecture we show that every coefficient of such a linear combination is given by an Ellwood invariant, computed in a slightly modified theory where it does not trivially vanish by the on-shell condition. Unlike the previous construction of Kiermaier, Okawa and Zwiebach, ours is linear in the string field, it is manifestly gauge invariant and it is also suitable for solutions known only numerically. The correct boundary state is readily reproduced in the case of known analytic solutions and, as an example, we compute the energy momentum tensor of the rolling tachyon from the generalized invariants of the corresponding solution. We also compute the energy density profile of Siegel-gauge multiple lump solutions and show that, as the level increases, it correctly approaches a sum of delta functions. This provides a gauge invariant way of computing the separations between the lower dimensional D-branes.Comment: v2: 63 pages, 14 figures. Major improvements in section 2. Version published in JHE

    Regularization of identity based solution in string field theory

    Full text link
    We demonstrate that an Erler-Schnabl type solution in cubic string field theory can be naturally interpreted as a gauge invariant regularization of an identity based solution. We consider a solution which interpolates between an identity based solution and ordinary Erler-Schnabl one. Two gauge invariant quantities, the classical action and the closed string tadpole, are evaluated for finite value of the gauge parameter. It is explicitly checked that both of them are independent of the gauge parameter.Comment: 9 pages, minor typos corrected and references adde

    On the validity of the solution of string field theory

    Get PDF
    We analyze the realm of validity of the recently found tachyon solution of cubic string field theory. We find that the equation of motion holds in a non trivial way when this solution is contracted with itself. This calculation is needed to conclude the proof of Sen's first conjecture. We also find that the equation of motion holds when the tachyon or gauge solutions are contracted among themselves.Comment: JHEP style, 9+1 pages. Typos correcte

    ΔSCOPE: A New Method to Quantify 3D Biological Structures and Identify Differences in Zebrafish Forebrain Development

    Get PDF
    Research in the life sciences has traditionally relied on the analysis of clear morphological phenotypes, which are often revealed using increasingly powerful microscopy techniques analyzed as maximum intensity projections (MIPs). However, as biology turns towards the analysis of more subtle phenotypes, MIPs and qualitative approaches are failing to adequately describe these phenotypes. To address these limitations and quantitatively analyze the three-dimensional (3D) spatial relationships of biological structures, we developed the computational method and program called ∆SCOPE (Changes in Spatial Cylindrical Coordinate Orientation using PCA Examination). Our approach uses the fluorescent signal distribution within a 3D data set and reorients the fluorescent signal to a relative biological reference structure. This approach enables quantification and statistical analysis of spatial relationships and signal density in 3D multichannel signals that are positioned around a well-defined structure contained in a reference channel. We validated the application of ∆SCOPE by analyzing normal axon and glial cell guidance in the zebrafish forebrain and by quantify- ing the commissural phenotypes associated with abnormal Slit guidance cue expression in the forebrain. Despite commissural phenotypes which display disruptions to the reference structure, ∆SCOPE was able to detect subtle, previously uncharacterized changes in zebrafish forebrain midline crossing axons and glia. This method has been developed as a user-friendly, open source program. We propose that ∆SCOPE is an innovative approach to advancing the state of image quantification in the field of high resolution microscopy, and that the techniques presented here are of broad applications to the life science field
    • 

    corecore