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Analytical solution of two-layer beam taking into account

interlayer slip and shear deformation

Simon Schnabl1, Miran Saje2, Goran Turk3 and Igor Planinc4

Abstract

A mathematical model is proposed and its analytical solution derived for the

analysis of the geometrically and materially linear two-layer beams with different

material and geometric characteristics of an individual layer. The model takes

into account the effect of the transverse shear deformation on displacements in

each layer. The analytical study is carried out to evaluate the influence of the

transverse shear deformation on the static and kinematic quantities. We study a

simply supported two-layer planar beam subjected to the uniformly distributed

load. Parametric studies have been performed to investigate the influence of shear

by varying material and geometric parameters, such as interlayer slip modulus

(K), flexural-to-shear moduli ratios (E/G) and span-to-depth ratios (L/h). The
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comparison of the results for vertical deflections shows that shear deformations

are more important for high slip modulus, for “short” beams with small L/h

ratios, and beams with high E/G ratios. In these cases the effect of the shear

deformations becomes significant and has to be addressed in design. It also

becomes apparent that models, which consider the partial interaction between

the layers, should be employed if beams have very flexible connections

Keywords: Timoshenko beam model, multi-layered planar beam, composite

structures, shear deformation, interlayer slip, exact solution, elasticity.

1 Introduction

Due to their economy of construction and high bearing capacity, layered sys-

tems are widely used to optimize the performance of components in structural

engineering. Classic cases are steel-concrete composite beams in buildings and

bridges, wood-concrete floor systems, coupled shear walls, concrete beams ex-

ternally reinforced with laminates, sandwich beams, and many more. The be-

haviour of these structures largely depends on the type of the connection between

the layers. Mechanical shear connectors are usually employed to provide a de-

sired composite action. With the use of the rigid shear connectors, a full shear

connection and, consequently, a full composite action between the individual

components can be achieved. The result is that conventional principles of the

solid beam analysis can be employed. Unfortunately, the rigid shear connectors

can hardly be realized in practice. Therefore, most of shear connections result
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in only a partial composite action. As a result, an interlayer slip often develops;

if it has a sufficient magnitude, it significantly effects the deformation and the

stress distribution of the composite system.

The first appreciation of a composite construction probably originated from

observations of highway bridges in service. After the experimental studies had

indicated the absence of full composite interaction between the layers in com-

posite beams, new theories were presented accounting for the slip between the

layers. These early theories of incomplete or partial interaction between the

layers of a composite beam were developed independently during the 1940s in

Switzerland, Sweden and the United States of America [Leon and Viest 1998].

These theories were based on the assumptions of linear elastic material mod-

els and the Euler-Bernoulli hypothesis of plane sections. Perhaps the first but

certainly the most quoted partial action theory was developed by Newmark et

al. [Newmark et al. 1951]. The subsequent theories differ in one or more as-

pects regarding the additional assumptions and resulted in similar second-order

differential equations. Up to now, a number of elastic theories with fewer sim-

plifying assumptions and of greater sophistication have been developed. Sev-

eral exact analytical solutions of simply supported, layered planar beams for

different combinations of simple loading cases and simple boundary conditions

have been presented in professional literature, e.g. [Girhammar and Gopu 1993,

Goodman and Popov 1968, Goodman and Popov 1969, Jasim 1997, Jasim and Ali 1997,

Ranzi et al. 2003]. With the development of computational tools and computers
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over the last decades, these elastic theories have been refined to incorporate nu-

merous aspects of non-linear geometric and material behaviour, as well as time

dependent effects, fatigue and load reversals, e.g. [Ayoub 2001, Čas et al. 2004,

Čas et al. 2004 b, Čas 2004, Fabbrocino et al. 2002, Faella et al. 2002, Gatessco 1999,

Smith and Teng 2001].

One of the basic assumptions of all the above mentioned exact analytical mod-

els with partial interaction theory of composite beams was the Euler-Bernoulli

hypothesis of plane sections of each individual layer. It is well known that the

classical Euler-Bernoulli theory of beam bending, also known as the elementary

theory of bending, disregards the effects of the shear deformation. The theory

is based on the assumption that the cross-section remains perpendicular to the

deformed centroidal axis of the beam during bending. This assumption implies

a zero shear strain and an infinite shear stiffness. In reality, no material exists

that possesses such a property. Since the Euler-Bernoulli theory neglects the

transverse shear deformation, its suitability for composite beams can be ques-

tioned. This is particularly true in circumstances where shear effects can be

significant, as in thick and short composite beams, where flexural-to-shear rigid-

ity ratio parameters are large and the span-to-depth ratio is small. Timoshenko

[Timoshenko 1921] was the pioneering investigator to include refined effects such

as the shear deformation in the beam theory. In the literature, this theory is now

widely referred to as the Timoshenko beam theory. The effect of shear deforma-

tion in Timoshenko’s theory is accounted for by an additional rotation angle of

4



transverse cross-sections. Consequently, the distribution of the transverse shear

deformation is assumed to be constant through the beam thickness. In the begin-

ning of 1970s, Reissner [Reissner 1972] has introduced a similar shear distortion

in his one-dimensional finite-strain beam model.

To improve the accuracy of the transverse stress prediction, non-classical

higher-order shear-deformable iterative models have been proposed [Gorik 2003,

Matsunaga 2002, Piskunov and Grinevitskii 2004, Soldatos and Watson 1997]. Ac-

cording to these propositions, a zero-iteration model corresponds to the classi-

cal Euler-Bernoulli theory, while the above mentioned non-classical Timoshenko

theory corresponds to the first-iteration model. Higher-order iteration models

introduce further deformation modes such as cross-sectional bulging and warp-

ing, which are important in the modelling of thin-walled composites structures,

employed in the aerospace industry. It is not the goal of the present paper to

model the higher-order deformations. Only the first-iteration model will be con-

sidered and the Reissner one-dimensional finite-strain beam model used in the

present analytical model. To the best of the authors’ knowledge, there seems

to exist no report on the exact analytical solution of the Timoshenko composite

beams with the partial interaction between the layers. In the present paper,

we aim to fill this gap, and present an exact analytical model of the composite

beam, which takes into account the effect of the shear deformation. Then we

make the parametric studies on the influence of shear deformation effects on the

mechanical behaviour of composite beams with the partial interaction between
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the layers. This way we show, when the effect of the shear deformation in the

individual layer can be neglected.

2 Analytical model

2.1 Assumptions

Our formulation of the planar Timoshenko two-layer composite beam model

uses the following assumptions: (1) material is linear elastic; (2) displacements,

strains and rotations are small; (3) shear deformations are taken into account

(the ‘Timoshenko beam’); (4) strains vary linearly over each layer (the ‘Bernoulli

hypothesis’); (5) the layers are continuously connected and slip modulus of the

connection is constant; (6) friction between the layers is not considered; (7)

the shapes of the cross-sections are symmetrical with respect to the plane of

deformation and remain unchanged in the form and size during deformation.

Our further assumption (8) is that an interlayer tangential slip can occur at the

interface between the layers but no delamination or the transverse separation

between them is possible.

2.2 Governing system of equations

We consider an initially straight, planar, two-layer composite beam element of

undeformed length L. Layers are marked by letters a and b (see Fig. 1). The

beam element is placed in the (x, z)-plane of a spatial Cartesian coordinate sys-
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tem with coordinates (x, y, z) and unit base vectors Ex,Ey,Ez. The undeformed

reference axis of the layered beam element is common to both layers and lies

in their contact plane. The layered beam element is subjected to the action of

the conservative distributed load p = pxEx + pzEz and the distributed moment

m = myEy along the span, and to external point forces and moments Sa
i and Sb

i

(i = 1, 2, . . . , 6) at its ends, respectively; see e.g. [Čas et al. 2004].

The deformed configurations of both layers are defined by vector-valued func-

tions

Ra(x, z) =
(
x + ua(x) + z ϕa(x)

)
Ex +

(
z + wa(x)

)
Ez,

Rb(x∗, z) =
(
x∗ + ub(x∗) + z ϕb(x∗)

)
Ex +

(
z + wb(x∗)

)
Ez,

(1)

where x∗ represents a material, undeformed coordinate of that point of layer

b which, in the deformed state, gets in contact with the point of layer a with

coordinate x (see Fig. 1. In Eqs. (1) and in all further expressions, the notations

(•)a and (•)b refer to layers a and b. Functions ua, wa, ϕa denote the components

of the displacement vector and the rotation angle of layer a at the reference axis

with respect to the base vectors Ex, Ez and Ey, respectively. Variables ub, wb, ϕb

are related to layer b.

The system of governing equations of the two-layer composite beam consists

of kinematic, equilibrium and constitutive equations with accompanying bound-

ary conditions for each of the two layers, and the constraining equations that

assemble each layer into a two-layer composite beam. Since deformations, dis-

placements and rotations are assumed to be small quantities, the generalized

equilibrium equations can be simplified using the following two assumptions (see,
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e.g. [Čas et al. 2004 b]: (i) dx ≈ dx∗; (ii) vertical deflections of the reference axis

of individual layers are equal wa(x) = wb(x∗) = w(x) and Ia ≈ Ib = [0, L]. Thus,

(•)b(x∗) = (•)b(x) holds true for any quantity of layer b, e.g. ub(x∗) = ub(x).

Kinematic, equilibrium and constraining equations can now be considerably sim-

plified. After considering the assumptions mentioned above, we can decompose

the basic equations of the two-layer beam with an interlayer slip into two separate

systems of differential and algebraic equations:

ua ′ − εa = 0, ub ′ − εb = 0,

wa ′ + ϕa − γa = 0, wb ′ + ϕb − γb = 0,

ϕa ′ − κa = 0, ϕb ′ − κb = 0,

(2)

wa − wb = 0, (3)

N a ′ − pt = 0, N b ′ + pt + px = 0,

Qa ′ + pn = 0, Qb ′ − pn + pz = 0,

Ma ′ −Qa = 0, Mb ′ −Qb + my = 0,

(4)

N a −N a
C = 0, N b −N b

C = 0,

Qa −Qa
C = 0, Qb −Qb

C = 0,

Ma −Ma
C = 0, Mb −Mb

C = 0,

(5)

∆ = ua − ub, (6)

pt = F(∆) = K∆, (7)

and

x + ua = x∗ + ub → x∗ = x + ∆ , (8)

N = N a + N b ,
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Q = Qa + Qb , (9)

M = Ma + Mb . (10)

In Eqs. (2–7), εa and εb are extensional strains of the reference axes of layers a and

b, κa and κb are pseudocurvatures, while γa and γb are transverse shear strains of

the corresponding cross-sections of layers a and b, respectively. N a,N b,Qa,Qb

and Ma,Mb represent equilibrium axial forces, equilibrium shear forces and

equilibrium bending moments of both layers. pt and pn denote the tangential

and the normal interlayer contact tractions in the contact plane between the

layers. N a
C,N b

C, Qa
C,Qb

C, and Ma
C,Mb

C are constitutive axial forces, constitutive

shear forces and constitutive bending moments of layers a and b, respectively. In

the case of linear elastic material, the constitutive forces are assumed to be given

by the linear relations with respect to εa, εb, κa, κb, γa and γb and, therefore,

take the following notation:

N a
C = EaAaεa + EaSaκa = Ca

11ε
a + Ca

12κ
a,

Qa
C = kyG

aAaγa = Ca
33γ

a,

Ma
C = EaSaεa + EaJaκa = Ca

21ε
a + Ca

22κ
a,

N b
C = EbAbεb + EbSbκb = Cb

11ε
b + Cb

12κ
b,

Qb
C = kyG

bAbγb = Cb
33γ

b,

Mb
C = EbSbεb + EbJ bκb = Cb

21ε
b + Cb

22κ
b,

(11)

where Ea,Eb are elastic and Ga, Gb are shear moduli of layers a and b, Aa, Ab

denote the areas of the cross-sections of layers a and b, Sa, Sb are the static

moments and Ja, J b are the moments of inertia of layers a and b with respect
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to the interlayer contact line. ky is shear coefficient of the cross-section of the

layer. In the case of a rectangular cross-section and isotropic material, the shear

coefficient is 5/6 [Cowper 1966].

The system of equations (2–7) consists of 21 equations for 21 unknown func-

tions ua, ub, wa, wb, ϕa, ϕb, εa, εb, κa, κb, γa, γb, N a, N b, Qa, Qb, Ma, Mb,

∆, pt, pn, whereas Eqs. (8–10) constitute a system of three equations for three

unknown functions x∗, Q, M. In Eqs. (7), K denotes the slip modulus at the

interlayer surface.

3 Solution algorithm

If the slip ∆ and normal traction pn between the layers is a known function of x,

the solution of the system of Eqs. (2–7) can easily be obtained with the following

sequence of steps.

In the first step, we differentiate Eqs. (6) and (3) twice with respect to x and

insert Eqs. (2). The following differential equations for the interlayer slip and

the pseudocurvatures are derived

∆ ′′ = εa ′ − εb ′, (12)

κb = κa + γb ′ − γa ′. (13)

The derivatives εa ′, εb ′, γa ′ and γb ′ are obtained from Eqs. (5), if differentiated

with respect to x. Solving the differentiated Eqs. (5) for εa ′, εb ′, γa ′, γb ′, κa ′
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and κb ′ gives

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

εa ′

γa ′

κa ′

εb ′

γb ′

κb ′

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

= C−1

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N a ′

Qa ′

Ma ′

N b ′

Qb ′

Mb ′

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (14)

C is the matrix of constitutive constants (see Eqs. (11)), and C−1 is its inverse:

C−1=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ca
11 0 Ca

12 0 0 0

0 Ca
33 0 0 0 0

Ca
21 0 Ca

22 0 0 0

0 0 0 Cb
11 0 Cb

12

0 0 0 0 Cb
33 0

0 0 0 Cb
21 0 Cb

22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Da
11 0 Da

12 0 0 0

0 Da
33 0 0 0 0

Da
21 0 Da

22 0 0 0

0 0 0 Db
11 0 Db

12

0 0 0 0 Db
33 0

0 0 0 Db
21 0 Db

22

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(15)

Furthermore, we differentiate Eq. (13) twice with respect to x. By insertion of

Eqs. (4) into Eq. (14), the second and third derivatives of strains are obtained by

differentiation of Eq. (14) twice and three times with respect to x. Introducing

εa ′, εb ′, κa ′′, κb ′′, γa ′′′ and γb ′′′ in Eq. (12) and differentiated Eq. (13), results in

a coupled system of two higher-order linear differential equations with constant

coefficients for the slip and the normal interlayer traction between layers a and b

∆ ′′′ + K1 ∆ ′ + K2 pn = Db
12 pz,

K5 p ′′
n + K4 pn + K3 ∆ ′ = −Db

22 pz,

(16)

11



with K1, K2, K3, K4, K5 being constants

K1 = −K(Da
11 + Db

11), K2 = Da
12 + Db

12, K3 = K(Da
21 + Db

21),

K4 = −(Da
22 + Db

22), K5 = Da
33 + Db

33.

(17)

Boundary conditions associated with Eqs. (16) are the values of the interlayer

slip and its first two derivatives, and the values of the normal interlayer traction

and its first derivative at the edge x = 0 of the beam element. An exact solution

of Eqs. (16) was easily obtained by Mathematica [Wolfram 2003]. Due to its

length and complexity the closed form expressions are not shown throughout the

paper. When the slip and the normal interlayer traction have been obtained,

the remaining equations of the system (2–7) can simply be solved. We first

determine the boundary rotations and displacements from the system of linear

equations

KT u = g (18)

for the composite structure. In Eq. (18), KT denotes the tangent stiffness matrix,

u is the vector of end-point displacements , and g is the load vector. Once u

is known, the values of the end forces can easily be computed. By integrating

the Eqs. (2) and (4) and considering the Eqs. (3), (6) and (7) the solution for

unknown functions ua, ub, wa, wb, ϕa, ϕb, εa, εb, κa, κb, γa, γb, N a, N b, Qa, Qb,

Ma, Mb, ∆, pt, pn can easily be obtained. Finally, the unknown functions x∗,

Q, M are obtained from Eqs. (8–10).
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4 Parametric studies

This section presents parametric studies performed on a simply supported two-

layer planar beam subjected to uniformly distributed load (see Fig. 2) with the

aim to investigate the influence of the shear deformation in an individual layer

and a variety of other material and geometric parameters, such as flexural-to-

shear and span-to-depth ratios, interlayer slip modulus, etc., on the mechanical

behaviour of the Timoshenko composite beams.

The main interest was focused on the assessment of the contribution effect of

the transverse shear deformation to the deformation and stresses in composite

beams with partial interaction between the layers. To this end, the vertical

deflections were calculated for different values of parameters (K,E/G,L/h) and

compared to those obtained by the analytical model of Euler-Bernoulli composite

beams with partial interaction between the individual components. Results are

given in Figs. 3, 4 and Table 1.

In Fig. 3 the vertical deflections (wT ) of the Timoshenko composite beam with

the partial interlayer interaction are compared to the vertical deflections (wB)

obtained by the Euler-Bernoulli composite beam model with the same partial

interlayer interaction (here also called the classical composite beam model), for

different L/h ratios and various interlayer slip moduli K. It can be observed in

Fig. 3 that decreasing the L/h ratios and increasing interlayer slip modulus K,

increases the influence of the transverse shear deformation on vertical deflections.

This influence is considerable in the case of timber composite beams (E/G = 16)
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even for relatively slender beams (L/h = 10), as can be seen from Fig. 4 and

Table 1. The effect is even more pronounced for timber composite beams with

L/h = 5, where the shear deformations increase the vertical deflections for the

values in the range from 19.2 % to 59.5 %.

The effect of shear deformation on the vertical deflections at the mid-span of

a composite beam has been investigated for various E/G and L/h ratios and

different interlayer slip moduli K. Here we present (see Table 1) only the results

for beams with E/G = 2.68 (the ratio, typical for isotropic materials such as

steel, aluminium and copper) and beams with E/G = 8.67 (transversely isotropic

glass-fiber-reinforced unidirectional composite beams) and for anisotropic wood

beams with E/G = 16÷ 20. The results for beam with E/G = 100, which is not

a realistic value for material, have been added in Fig. 4 as well.

A comparative analysis of the analytical results for the vertical deflections at

the mid-span of a simply supported composite beam with the partial interlayer

interaction shows that the influence of shear effects is significant for composite

beams where E/G ≥ 16, particularly in the case of rather stiff connections with

very high interlayer slip moduli K, where the influence of shear effects on the

increase of deflections can be as high as 15.4 % for L/h = 10, and more than

250 % for short beams with L/h = 3.

The contribution of the shear effects to the vertical deflections ranges, in the

case of steel, aluminium and copper composite beams with E/G = 2.86, from

0.3 % to 8.3 % for 5 ≤ L/h ≤ 15. Therefore, for such composite beams, the shear
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effects are insignificant, except for “short” beams with L/h ≤ 3 and high K’s.

In the case of glass-fiber-reinforced composite beams with E/G = 8.67, the

influence for beams with L/h ≥ 10 is still beyond 8.4 % and thus less significant,

while the influence on beams with L/h ≤ 5 becomes important (it ranges from

10.4 % to 32.9 %).

It is illustrative to study the influence of the shear deformation in an individual

layer on the static and kinematic quantities rather than w, such as ∆, pn, εa, N a

etc.

These quantities have been calculated for timber composite beams with E/G

= 16 and for various values of parameters L/h and K. The results are pre-

sented in Fig. 5 and in Table 2, where the notations (•)T and (•)B mark that

the quantities have been calculated by different beam models. Thus, (•)B rep-

resents quantities calculated by the Euler-Bernoulli composite beam model with

the partial interlayer interaction, and (•)T represents quantities obtained by the

Timoshenko composite beam model.

The examination of analytical results in Table 2 and in Fig. 5 reveals, that the

shear deformation has an important influence not only on the vertical deflections,

but also on other mechanical quantities of composite beams with the partial

interlayer interaction.

An interesting detail at this point is, that the influence of the shear deforma-

tion has different effects on different quantities. Some quantities, like w, ϕb, κb,

N a, increase due to the shear deformation, while the others, like pn, εa, ϕa, de-
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crease when compared to the quantities calculated by the classical beam model.

E.g., an increasing influence of shear effects on ϕb(0) for interlayer slip modulus

K = 0.1 kN/cm2 and L/h = 3 is found to be 25.0 %, while for L/h = 15 it is only

1.2 %. On the other hand, a decreasing influence of shear effects on εa(L/2) is

found (−10.3 %) for K = 100 kN/cm2 and L/h = 3, and −2.2 % for L/h = 10 it

is . It is clear from the results depicted in Fig. 6 that, in addition to the increase

in the L/h, the increase of K leads to a significant enlargement of tangential

interlayer tractions with respect to normal interlayer tractions in the contact

plane between the layers. For example, in the case of relatively slender two-layer

composite beams (L/h ≥ 10) with K ≥ 10 kN/cm2, the tangential interlayer

tractions may be as high as about 20-times of the normal interlayer tractions.

Although it has been shown that the influence of shear effects on the interlayer

tractions is negligible, it is apparent from the graphs in Fig. 7, that the shear

deformation has an important impact on the ratio of the interlayer tractions,

especially for the two-layer beams with L/h ≤ 10, where the influence of shear

effects is more than 29.0 %.

A parametric study has also been conducted to assess the effects of different

parameters such as ha/hb and K on the vertical deflections and shear forces. For

this purpose, the vertical deflections at the mid-span and the shear forces at the

edge x = 0 of the two-layer composite beam have been calculated for various

ha/hb and K. In the case of relatively slender timber beams with L/h = 10

and E/G = 16, the parametric study reveals, that minimum shear effects occur
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when layers have approximately equal depths. In Fig. 8 it is shown, that the

corresponding discrepancies are higher for smaller values of K and can be, in the

case of a rather flexible connection (K ≤ 1 kN/cm2), as much as about 4-times

smaller than in the case of stiff interaction between the layers.

Figs. 9 and 10 show that the contribution to the shear forces due to shear

effects can be considerable, especially when the depth of one layer is very small

compared to the depth of the other one and for small values of K.

It is observed, that for a very thin bottom layer a (ha/hb ≤ 0.1) and the

non-stiff interlayer contact (K = 0.1 kN/cm2), the shear force Qa can be due to

shear effects about 2.8-times bigger than the one obtained by the Euler-Bernoulli

model. By contrast, for high values of K, the shear force Qa may be about twice

as small as in the case of the Euler-Bernoulli beam. It is also apparent from

Fig. 10, that the value of the shear force Qb in Timoshenko’s theory is in the

non-stiff connection about 2.5-times bigger if the top layer is very thin compared

to the bottom one. Thus, it has been shown, that the shear deformations have

considerable influence on static shear forces of individual layers of the two-layer

composite beam and hence should not be neglected in the analysis of such struc-

tures.

In addition, the vertical deflections have been calculated for timber compos-

ite beams with E/G = 16 and L/h = 10 by different beam models: (i) using

empirical formulas given in the European code for timber structures Eurocode 5

[Eurocode 5 1993], (ii) with the classical Euler-Bernoulli beam model with and
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without considering the interlayer slip, (iii) with the Timoshenko beam model

for beams without the interlayer slip, and finally (iv) with the present analyt-

ical Timoshenko composite beam model with the consideration of the partial

interaction between the layers.

In Table 3 the results of different beam models and for a wide range of slip

modulus from 0.001 to 1000 kN/cm2 are presented and compared. Observe

that the influence of the interlayer slip modulus on the vertical deflections is

negligible for the range of the slip modulus from 0.001 to 0.1 kN/cm2, and that

the influence of solely slip modulus on the deflections due to the interlayer slip

(wB/w∗
B) decreases with the increase of the slip modulus. On the other hand, the

combined influence of the shear deformation and slip (wT /wB) on the deflections

increases with the increase of the slip modulus between the layers. Thus, for

high values of K, deflections obtained by both Euler-Bernoulli and Timoshenko

models with the consideration of the partial interaction differ from deflections

obtained by the complete-interaction models by less than 1.2 %. Note that the

deflections, obtained by the formulae given in Eurocode [Eurocode 5 1993] for

composite beams with interlayer slip between the layers, agree with the present

results for Euler-Bernoulli beam for 0.001 < K < 10 kN/m2 and 100 < K < 1000

kN/m2, but not for 10 < K < 100 kN/m2, where the maximum difference is

22.5 %. The comparison with the Timoshenko beam is more promising.

Fig. 11 shows comparisons of vertical deflections obtained by different beam

models. It can be seen from the results in Table 3 and Fig. 11 that the models
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with the partial interaction are essential for the accurate prediction of vertical

deflections, especially for more flexible connections between the layers, i.e. for the

range of slip moduli from 0.001 to 1 kN/cm2, since the comparisons of wB/w∗
B

and wT /w∗
T show, that the deflections may be as high as about 3.5-times of

the deflections of a rigidly connected layered beam. Furthermore, based on the

comparisons between the analytical results for vertical deflections shown in Table

3 and Fig. 11, it is clear, that the proposed model needs to be employed even

for the range of the slip modulus K > 50 kN/cm2. The comparison of vertical

deflections wT /wB shows, that the effect of the shear deformation on the increase

of vertical deflections can be about 15.4 %.

Next, let us inspect the stress distributions over the depth of the two-layer

composite beam. The longitudinal normal stresses σxx have been evaluated at the

mid-span section, and the tangential stresses σxz at the edge section of the beam

shown in Fig. 2. From Fig. 12 it can be seen that the distributions and the values

of the normal and the tangential stresses in the layers are very much affected by

the stiffness of the contact. The effect is depicted for various stiffnesses and

the ‘zig-zag’ linear variation of normal stresses and the quadratic distribution of

tangential stresses is obtained. Note that for small K’s the maximum tangential

stresses considerably exceed the stresses obtained from the classical solid beam

model. It is apparent that the classical beam theory underestimates both the

normal and the tangential stresses in layered beams. In the case of the non-stiff

connection between the layers, the tangential stresses σxz may increase up to
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25 % compared to the stresses in the ‘solid beam’.

5 Conclusions

A mathematical model is proposed and its analytical solution is found for the

analysis of the geometrically and materially linear layered beams with different

material and geometric characteristics of each layer. The proposed analytical

model takes into account the transverse shear deformation of each layer of a

multi-layer beam. The analytical study is carried out for evaluating the influ-

ence of the transverse shear deformation on the static and kinematic quantities.

Particular emphasis is given to the vertical deflections at the mid-span of a sim-

ply supported two-layer planar beam subjected to the uniformly distributed load.

For this purpose, several parametric studies have been performed to investigate

the influence of shear effects and various material and geometric parameters, such

as flexural-to-shear rigidity ratios and span-to-depth ratios, on the mechanical

behaviour of the layered Timoshenko beams.

Based on the results of this analytical study and the parametric evaluations

undertaken, the following conclusions can be drawn:

1. The present mathematical model is general and relatively easy to compre-

hend.

2. The influence of the shear deformation on vertical deflections is increasing

with decreasing L/h ratios and increasing K. In the case of a timber

20



composite beam (E/G = 16), the contribution of shear deformations to

vertical deflections can be about 15 % for ratios L/h = 10. The effect is

even more pronounced for beams with L/h = 5, where the effect of shear

deformation on vertical deflections ranges between 19 % and 60 %.

3. The influence of shear effects is significant for composite beams with E/G ≥

16, particularly in the case of very high interlayer slip moduli, where the

influence is about 15 % for L/h = 10, and about 250 % for “short” beams

with L/h = 3.

4. In the case of steel, aluminium and copper composite beams with E/G =

2.86, the extra contribution to the vertical deflections due to shear effects

ranges from 0.3 % to 8 % for 5 ≤ L/h ≤ 15. Therefore, for such composite

beams, shear effects are insignificant, except possibly for “short” beams

with L/h ≤ 3 and higher values of K.

5. In the case of glass-fiber reinforced unidirectional composite beams with

E/G = 8.67, the influence of shear effects on vertical deflections increases

with an increase in K and a decrease in L/h. Thus, the influence for beams

with L/h ≥ 10 is still beyond 8 % and hence insignificant, in contrast to

beams with L/h = 5, where the increase of the deflection ranges from 10 %

to 33 %, and particularly for very “short” and rigidly connected composite

beams, where the influence of shear effects can reach values up to 85 %.

6. In the case of relatively slender two-layer composite beams (L/h ≥ 10)
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with K ≥ 10 kN/cm2, the tangential interlayer tractions are about 20-times

bigger than the related normal interlayer tractions. The shear deformation

has an important impact on the actual ratio of the interlayer tractions. For

the two-layer beams with L/h ≤ 10, the influence of shear effects is more

than 29 %.

7. In the case of one very thin layer and a rather flexible connection (K =

0.1 kN/cm2), the corresponding shear force in the thin layer can be consid-

erably bigger than in the classical theory. This is, QT is about 2.8-times

larger for non-stiff and about twice smaller than QB obtained by the clas-

sical Euler-Bernoulli beam model. Similarly, the shear force QT of a very

thin top layer is 2.5-times larger than that of the classical theory. Thus,

we have shown, that the shear has a considerable impact on the values of

the shear forces in the layers, and therefore should not be neglected.

8. The influence of shear deformation on vertical deflections is negligible, if

0.001 ≤ K ≤ 0.1 kN/cm2, E/G = 16 and L/h = 10.

9. The results of the deflection formulae given in Eurocode 5 [Eurocode 5 1993]

agree completely with the present results if 0.001 ≤ K ≤ 0.1 kN/cm2, while

discrepancies may occur for other values of K.

10. The comparison of the results wB/w∗
B and wT /w∗

T shows that larger shear

deformations develop for large slip moduli K, for “short” beams with small

L/h ratios and for materials with high E/G ratios. In all these cases, the
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role of shear deformations is significant and they have to be addressed in

design. It also becomes clear that the beam models should consider the

partial interaction between the layers if K takes small values.

11. The ‘zig-zag’ linear variation of the normal stresses and the piece-wise

quadratic distribution of the tangential stresses over the composite cross-

section has been obtained. For K ≤ 0.1 kN/cm2, the maximum tangential

stresses σxz may exceed the values obtained from the classical solid beam

model for about 25 %. It is apparent then, that the classical solid beam

model provides non-conservative estimates for the tangential and normal

stresses in layered beams.
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Table 1: Influence of K,E/G and L/h on vertical deflections (wT /wB).

E/G=2.68 E/G=8.67 E/G=16

K [kN/cm2] I II III I II III I II III

0.001 1.090 1.032 1.008 1.287 1.104 1.026 1.524 1.192 1.048

0.01 1.090 1.032 1.008 1.287 1.104 1.026 1.524 1.192 1.048

0.1 1.090 1.032 1.008 1.288 1.105 1.027 1.524 1.192 1.049

1 1.091 1.033 1.008 1.293 1.110 1.032 1.529 1.197 1.054

10 1.092 1.034 1.010 1.341 1.152 1.056 1.581 1.244 1.087

50 1.098 1.040 1.014 1.494 1.237 1.075 1.767 1.370 1.128

100 1.105 1.046 1.017 1.603 1.274 1.080 1.931 1.445 1.139

1000 1.182 1.083 1.024 1.875 1.329 1.084 2.534 1.595 1.154

Note: I: L/h= 3 II: L/h= 5 III: L/h= 10
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Table 2: Static and kinematic quantities as functions of K and L/h for E/G = 16.

K = 0.1 kN/cm2 K = 100 kN/cm2

(•)T /(•)B I II III I II III

w(L/2) 1.524 1.192 1.049 1.931 1.445 1.139

∆(0) 1.046 1.020 1.006 1.026 1.012 1.005

ϕa(0) 0.939 0.973 0.992 0.919 0.960 0.988

ϕb(0) 1.250 1.092 1.026 1.185 1.083 1.030

κa(L/2) 0.944 0.977 0.994 0.927 0.969 0.992

κb(L/2) 1.188 1.077 1.020 1.156 1.059 1.015

N a(L/2) 1.044 1.019 1.005 1.022 1.007 1.001

εa(L/2) 0.944 0.977 0.994 0.897 0.942 0.978

pn(L/2) 0.968 0.994 1.000 1.993 1.004 1.001

Note: I: L/h= 3 II: L/h = 5 III: L/h = 10
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Table 3: Vertical deflections calculated by different beam models for different

K’s with L/h = 10 and E/G = 16.

K EC 5 w∗
B wB w∗

T wT
EC5
wB

wT

wB

wB

w∗
B

wT

w∗
T

wT

w∗
B[

kN
cm2

]
[cm] [cm] [cm] [cm] [cm]

0.001 3.875 1.085 3.875 1.252 4.062 1.000 1.048 3.571 3.243 3.743

0.01 3.872 1.085 3.869 1.252 4.057 1.000 1.048 3.566 3.239 3.738

0.1 3.845 1.085 3.818 1.252 4.005 1.007 1.049 3.518 3.197 3.691

1 3.602 1.085 3.391 1.252 3.573 1.062 1.054 3.125 2.853 3.293

10 2.427 1.085 1.982 1.252 2.154 1.225 1.087 1.826 1.720 1.985

50 1.526 1.085 1.325 1.252 1.494 1.153 1.128 1.221 1.193 1.377

100 1.326 1.085 1.230 1.252 1.379 1.096 1.139 1.115 1.101 1.270

1000 1.111 1.085 1.098 1.252 1.267 1.012 1.154 1.012 1.012 1.168

Note: * without interlayer slip

29



List of figures

Fig. 1: Undeformed and deformed configuration of the two-layer beam.

Fig. 2: Simply supported two-layer beam.

Fig. 3: Influence of slip modulus and L/h ratios on vertical deflections for E/G = 16.

Fig. 4: Influence of E/G and L/h ratios on vertical deflections for K = 100.

Fig. 5: Static and kinematic quantities as a function of L/h for E/G = 16 and K =

100 kN/cm2.

Fig. 6: Tangential and normal tractions as a function of L/h for E/G = 16 and dif-

ferent K’s.

Fig. 7: Ratio of tangential and normal tractions as a function of L/h for E/G = 16

and different K’s.

Fig. 8: Vertical deflections as a function of ha/hb for L/h = 10 and E/G = 16 and

different K’s.

Fig. 9: Shear force Qa as a function of ha/hb for L/h = 10, E/G = 16 and different

K’s.

Fig. 10: Shear force Qb as a function of ha/hb for L/h = 10, E/G = 16 and different

K’s.

Fig. 11: Comparisons of vertical deflections calculated by different beam models, for

different K’s with L/h = 10 and E/G = 16.

Fig. 12: The distribution of normal and tangential stresses over the cross-section for

different K’s.

30



R *=
a
( )x,z R

b
( )x ,z

deformed configuration

undeformed configuration

z

x
x L=x 0=

x 0= x L=

Ez

*
x

x

z

y

Ey

L

Ex

Ez

Figure 1: Undeformed and deformed configuration of the two-layer beam.

31



I

I

Section I-I:

z
p

ba bb=

hb

h
a

x y

zz

Figure 2: Simply supported two-layer beam.

32



2 4 6 8 10 12

1.0

1.5

2.0

2.5

3.0

3.5

4.0

L /h

w
B

w
T

Figure 3: Influence of slip modulus and L/h ratios on vertical deflections for

E/G = 16.

33



w
B

w
T

1.0

1.2

1.4

1.6

1.8

2.0

L /h
2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Figure 4: Influence of E/G and L/h ratios on vertical deflections for K = 100.

34



( )B

( )
T

L /h42 6 8 10 12

1.0

0.8

1.2

1.4

1.6

1.8

2.0

2.2

0.95

1.00

1.05

1.10

1.15

8 9 10 11 127

1.20

�

f

f

w

Figure 5: Static and kinematic quantities as a function of L/h for E/G = 16 and

K = 100 kN/cm2.

35



5

10

15

20

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
L /h

T

T

Figure 6: Tangential and normal tractions as a function of L/h for E/G = 16

and different K’s.

36



T

T

3 4 5 6 7 8 9 10

1.30

1.32

1.34

1.36

2
L /h

B

B

Figure 7: Ratio of tangential and normal tractions as a function of L/h for

E/G = 16 and different K’s.

37



1.04

1.06

1.08

1.10

1.12

1.14

1.16

/h

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

w
B

w
T

h

0

Figure 8: Vertical deflections as a function of ha/hb for L/h = 10 and E/G = 16

and different K’s.

38



0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.5

1.0

1.5

2.0

2.5

3.0

/hh

�
T

�
B

Figure 9: Shear force Qa as a function of ha/hb for L/h = 10, E/G = 16 and

different K’s.

39



2 4 6 8 10

1.00

1.25

1.50

1.75

2.00

2.25

2.50

/hh

�
T

�
B

0

Figure 10: Shear force Qb as a function of ha/hb for L/h = 10, E/G = 16 and

different K’s.

40



-7.5 -5.0 -2.5 0.0 2.5 5.0 7.5 10.0

1.0

1.5

2.0

2.5

3.0

3.5

-10.0

w
B

EC 5

Log K

w
B

w
B

w
B

w
T

w
B

w
T

�

�

EC 5

w
B

w
T

w
B

w
T
�

w
B

w
B
�

w
B

Figure 11: Comparisons of vertical deflections calculated by different beam mod-

els, for different K’s with L/h = 10 and E/G = 16.

41



0 0.025 0.050 0.075 0.100 0.125 0.150 -2 -1 0 1 2
�xx [kN/cm ]2

�xz [kN/cm ]
2

layer ‘ ’

layer ‘ ’

Ez

Ex

Figure 12: The distribution of normal and tangential stresses over the cross-

section for different K’s.

42


