1,657 research outputs found

    The Cerebral Haemorrhage Anatomical RaTing inStrument (CHARTS): Development and assessment of reliability.

    Get PDF
    PURPOSE: The causes, risk factors and prognosis of spontaneous intracerebral haemorrhage (ICH) are partly determined by anatomical location (specifically, lobar vs. non-lobar (deep and infratentorial) regions). We systematically developed a rating instrument to reliably classify ICH location. METHODS: We used a two-stage iterative Delphi-style method for instrument development. The resultant Cerebral Haemorrhage Anatomical RaTing inStrument (CHARTS) was validated on CT and MRI scans from a cohort of consecutive patients with acute spontaneous symptomatic ICH by three independent raters. We tested interrater and intrarater reliability using kappa statistics. RESULTS: Our validation cohort included 227 patients (58% male; median age: 72.4 (IQR: 67.1-74.6)). The interrater reliability for the main analyses (i.e. including any lobar ICH; all deep and infratentorial anatomical categories (lentiform, caudate thalamus; brainstem; cerebellum); and uncertain location) was excellent (all kappa values>0.80) both in pair-wise between-rater comparisons and across all raters. The intrarater reliability was substantial to almost perfect (k=0.83; 95%CI: 0.77-0.88 and k=0.95; 95%CI: 0.92-0.96 respectively). All kappa statistics remained consistent for individual cerebral lobar regions. CONCLUSIONS: The CHARTS instrument can be used to reliably and comprehensively map the anatomical location of spontaneous ICH, and may be helpful for studying important questions regarding causes, risk factors, prognosis, and for stratification in clinical trials

    A Close Nuclear Black Hole Pair in the Spiral Galaxy NGC 3393

    Full text link
    The current picture of galaxy evolution advocates co-evolution of galaxies and their nuclear massive black holes (MBHs), through accretion and merging. Quasar pairs (6,000-300,000 light-years separation) exemplify the first stages of this gravitational interaction. The final stages, through binary MBHs and final collapse with gravitational wave emission, are consistent with the sub-light-year separation MBHs inferred from optical spectra and light-variability of two quasars. The double active nuclei of few nearby galaxies with disrupted morphology and intense star formation (e.g., NGC 6240 and Mkn 463; ~2,400 and ~12,000 light-years separation respectively) demonstrate the importance of major mergers of equal mass spirals in this evolution, leading to an elliptical galaxy, as in the case of the double radio nucleus (~15 light-years separation) elliptical 0402+379. Minor mergers of galaxies with a smaller companion should be a more common occurrence, evolving into spiral galaxies with active MBH pairs, but have hitherto not been seen. Here we report the presence of two active MBHs, separated by ~430 light-years, in the Seyfert galaxy NGC 3393. The regular spiral morphology and predominantly old circum-nuclear stellar population of this galaxy, and the closeness of the MBHs embedded in the bulge, suggest the result of minor merger evolution.Comment: Preprint (not final) version of a paper to appear in Natur

    Star Formation Rate Indicators in Wide-Field Infrared Survey Preliminary Release

    Full text link
    With the goal of investigating the degree to which theMIR luminosity in theWidefield Infrared Survey Explorer (WISE) traces the SFR, we analyze 3.4, 4.6, 12 and 22 {\mu}m data in a sample of {\guillemotright} 140,000 star-forming galaxies or star-forming regions covering a wide range in metallicity 7.66 < 12 + log(O/H) < 9.46, with redshift z < 0.4. These star-forming galaxies or star-forming regions are selected by matching the WISE Preliminary Release Catalog with the star-forming galaxy Catalog in SDSS DR8 provided by JHU/MPA 1.We study the relationship between the luminosity at 3.4, 4.6, 12 and 22 {\mu}m from WISE and H\alpha luminosity in SDSS DR8. From these comparisons, we derive reference SFR indicators for use in our analysis. Linear correlations between SFR and the 3.4, 4.6, 12 and 22 {\mu}m luminosity are found, and calibrations of SFRs based on L(3.4), L(4.6), L(12) and L(22) are proposed. The calibrations hold for galaxies with verified spectral observations. The dispersion in the relation between 3.4, 4.6, 12 and 22 {\mu}m luminosity and SFR relates to the galaxy's properties, such as 4000 {\deg}A break and galaxy color.Comment: 10 pages, 3 figure

    Coherent electrical control of a single high-spin nucleus in silicon

    Full text link
    Nuclear spins are highly coherent quantum objects. In large ensembles, their control and detection via magnetic resonance is widely exploited, for example, in chemistry, medicine, materials science and mining. Nuclear spins also featured in early proposals for solid-state quantum computers1 and demonstrations of quantum search2 and factoring3 algorithms. Scaling up such concepts requires controlling individual nuclei, which can be detected when coupled to an electron4–6. However, the need to address the nuclei via oscillating magnetic fields complicates their integration in multi-spin nanoscale devices, because the field cannot be localized or screened. Control via electric fields would resolve this problem, but previous methods7–9 relied on transducing electric signals into magnetic fields via the electron–nuclear hyperfine interaction, which severely affects nuclear coherence. Here we demonstrate the coherent quantum control of a single 123Sb (spin-7/2) nucleus using localized electric fields produced within a silicon nanoelectronic device. The method exploits an idea proposed in 196110 but not previously realized experimentally with a single nucleus. Our results are quantitatively supported by a microscopic theoretical model that reveals how the purely electrical modulation of the nuclear electric quadrupole interaction results in coherent nuclear spin transitions that are uniquely addressable owing to lattice strain. The spin dephasing time, 0.1 seconds, is orders of magnitude longer than those obtained by methods that require a coupled electron spin to achieve electrical driving. These results show that high-spin quadrupolar nuclei could be deployed as chaotic models, strain sensors and hybrid spin-mechanical quantum systems using all-electrical controls. Integrating electrically controllable nuclei with quantum dots11,12 could pave the way to scalable, nuclear- and electron-spin-based quantum computers in silicon that operate without the need for oscillating magnetic fields

    Time-Course Analysis of Cyanobacterium Transcriptome: Detecting Oscillatory Genes

    Get PDF
    The microarray technique allows the simultaneous measurements of the expression levels of thousands of mRNAs. By mining these data one can identify the dynamics of the gene expression time series. The detection of genes that are periodically expressed is an important step that allows us to study the regulatory mechanisms associated with the circadian cycle. The problem of finding periodicity in biological time series poses many challenges. Such challenge occurs due to the fact that the observed time series usually exhibit non-idealities, such as noise, short length, outliers and unevenly sampled time points. Consequently, the method for finding periodicity should preferably be robust against such anomalies in the data. In this paper, we propose a general and robust procedure for identifying genes with a periodic signature at a given significance level. This identification method is based on autoregressive models and the information theory. By using simulated data we show that the suggested method is capable of identifying rhythmic profiles even in the presence of noise and when the number of data points is small. By recourse of our analysis, we uncover the circadian rhythmic patterns underlying the gene expression profiles from Cyanobacterium Synechocystis

    Having a lot of a good thing: multiple important group memberships as a source of self-esteem.

    Get PDF
    Copyright: © 2015 Jetten et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are creditedMembership in important social groups can promote a positive identity. We propose and test an identity resource model in which personal self-esteem is boosted by membership in additional important social groups. Belonging to multiple important group memberships predicts personal self-esteem in children (Study 1a), older adults (Study 1b), and former residents of a homeless shelter (Study 1c). Study 2 shows that the effects of multiple important group memberships on personal self-esteem are not reducible to number of interpersonal ties. Studies 3a and 3b provide longitudinal evidence that multiple important group memberships predict personal self-esteem over time. Studies 4 and 5 show that collective self-esteem mediates this effect, suggesting that membership in multiple important groups boosts personal self-esteem because people take pride in, and derive meaning from, important group memberships. Discussion focuses on when and why important group memberships act as a social resource that fuels personal self-esteem.This study was supported by 1. Australian Research Council Future Fellowship (FT110100238) awarded to Jolanda Jetten (see http://www.arc.gov.au) 2. Australian Research Council Linkage Grant (LP110200437) to Jolanda Jetten and Genevieve Dingle (see http://www.arc.gov.au) 3. support from the Canadian Institute for Advanced Research Social Interactions, Identity and Well-Being Program to Nyla Branscombe, S. Alexander Haslam, and Catherine Haslam (see http://www.cifar.ca)

    Mate Value and Self-Esteem: Evidence from Eight Cultural Groups

    Get PDF
    This paper explores self-perceived mate value (SPMV), and its association with self-esteem, in eight cultures. 1066 participants, from 8 cultural groups in 7 countries, rated themselves on 24 SPMVs and completed a measure of self-esteem. Consistent with evolutionary theory, women were more likely to emphasise their caring and passionate romantic nature. In line with previous cross-cultural research, characteristics indicating passion and romance and social attractiveness were stressed more by respondents from individualistic cultures, and those higher on self-expression (rather than survival) values; characteristics indicative of maturity and confidence were more likely to be mentioned by those from Traditional, rather than Secular, cultures. Contrary to gender role theory, societal equality had only limited interactions with sex and SPMV, with honesty of greater significance for male self-esteem in societies with unequal gender roles. These results point to the importance of cultural and environmental factors in influencing self-perceived mate qualities, and are discussed in relation to broader debates about the impact of gender role equality on sex differences in personality and mating strategies

    From Africa to Europe and back: refugia and range shifts cause high genetic differentiation in the Marbled White butterfly Melanargia galathea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The glacial-interglacial oscillations caused severe range modifications of biota. Thermophilic species became extinct in the North and survived in southern retreats, e.g. the Mediterranean Basin. These repeated extinction and (re)colonisation events led to long-term isolation and intermixing of populations and thus resulted in strong genetic imprints in many European species therefore being composed of several genetic lineages. To better understand these cycles of repeated expansion and retraction, we selected the Marbled White butterfly <it>Melanargia galathea</it>. Fourty-one populations scattered over Europe and the Maghreb and one population of the sibling taxon <it>M. lachesis </it>were analysed using allozyme electrophoresis.</p> <p>Results</p> <p>We obtained seven distinct lineages applying neighbour joining and STRUCTURE analyses: (i) Morocco, (ii) Tunisia, (iii) Sicily, (iv) Italy and southern France, (v) eastern Balkans extending to Central Europe, (vi) western Balkans with western Carpathian Basin as well as (vii) south-western Alps. The hierarchy of these splits is well matching the chronology of glacial and interglacial cycles since the GĂŒnz ice age starting with an initial split between the <it>galathea </it>group in North Africa and the <it>lachesis </it>group in Iberia. These genetic structures were compared with past distribution patterns during the last glacial stage calculated with distribution models.</p> <p>Conclusions</p> <p>Both methods suggest climatically suitable areas in the Maghreb and the southern European peninsulas with distinct refugia during the last glacial period and underpin strong range expansions to the North during the Postglacial. However, the allozyme patterns reveal biogeographical structures not detected by distribution modelling as two distinct refugia in the Maghreb, two or more distinct refugia at the Balkans and a close link between the eastern Maghreb and Sicily. Furthermore, the genetically highly diverse western Maghreb might have acted as source or speciation centre of this taxon, while the eastern, genetically impoverished Maghreb population might result from a relatively recent recolonisation from Europe via Sicily.</p
    • 

    corecore