374 research outputs found

    The mutational landscape of a prion-like domain

    Get PDF
    Insoluble protein aggregates are the hallmarks of many neurodegenerative diseases. For example, aggregates of TDP-43 occur in nearly all cases of amyotrophic lateral sclerosis (ALS). However, whether aggregates cause cellular toxicity is still not clear, even in simpler cellular systems. We reasoned that deep mutagenesis might be a powerful approach to disentangle the relationship between aggregation and toxicity. We generated >50,000 mutations in the prion-like domain (PRD) of TDP-43 and quantified their toxicity in yeast cells. Surprisingly, mutations that increase hydrophobicity and aggregation strongly decrease toxicity. In contrast, toxic variants promote the formation of dynamic liquid-like condensates. Mutations have their strongest effects in a hotspot that genetic interactions reveal to be structured in vivo, illustrating how mutagenesis can probe the in vivo structures of unstructured proteins. Our results show that aggregation of TDP-43 is not harmful but protects cells, most likely by titrating the protein away from a toxic liquid-like phase

    Towards a taxonomy of process quality characteristics for assessment

    Get PDF
    Previous assessment of process quality have focused on process capability (i.e. the ability of a process to meet its stated goals). This paper proposes a taxonomy of alternative process quality characteristics based on intrinsic and extrinsic quality attributes. The ultimate goal of this taxonomy is to provide a framework to conduct process assessments using different process quality aspects. Such a framework would considerably broaden process quality perspectives beyond the primary measure of process capability. It would also allow practitioners to identify and evaluate relevant quality characteristics for processes based on specific contexts and implications. For the process assessment model developers, it offers a list of process quality characteristics that could be used to develop relevant process measurement frameworks

    Virological failure after 1 year of first-line ART is not associated with HIV minority drug resistance in rural Cameroon

    Get PDF
    Objectives The aim of this study was to describe clinical and virological outcomes in therapy-naive HIV-1-positive patients treated in a routine ART programme in rural Cameroon. Methods In a prospective cohort, 300 consecutive patients starting first-line ART were enrolled and followed for 12 months. Among 238 patients with available viral load data at Month 12, logistic regression was used to analyse risk factors for virological failure (≥1000 HIV RNA copies/mL) including clinical, immunological and virological parameters, as well as data on drug adherence. Population sequencing was performed to detect the presence of drug-resistance mutations in patients with virological failure at Month 12; minority drug-resistance mutations at baseline were analysed using next-generation sequencing in these patients and matched controls. Results At Month 12, 38/238 (16%) patients experienced virological failure (≥1000 HIV RNA copies/mL). Patients with virological failure were younger, had lower CD4 cell counts and were more often WHO stage 3 or 4 at baseline. Sixty-three percent of patients with virological failure developed at least one drug-resistance mutation. The M184V (n = 18) and K103N (n = 10) mutations were most common. At baseline, 6/30 patients (20%) experiencing virological failure and 6/35 (17%) matched controls had evidence of minority drug-resistance mutations using next-generation sequencing (P = 0.77). Lower CD4 count at baseline (OR per 100 cells/mm3 lower 1.41, 95% CI 1.02-1.96, P = 0.04) and poorer adherence (OR per 1% lower 1.05, 95% CI 1.02-1.08, P < 0.001) were associated with a higher risk of virological failure. Unavailability of ART at the treatment centre was the single most common cause for incomplete adherence. Conclusions Virological failure after 1 year of ART was not associated with minority drug resistance at baseline but with incomplete adherence. Strategies to assure adherence and uninterrupted drug supplies are pivotal factors for therapy succes

    Simple Viscous Flows: from Boundary Layers to the Renormalization Group

    Full text link
    The seemingly simple problem of determining the drag on a body moving through a very viscous fluid has, for over 150 years, been a source of theoretical confusion, mathematical paradoxes, and experimental artifacts, primarily arising from the complex boundary layer structure of the flow near the body and at infinity. We review the extensive experimental and theoretical literature on this problem, with special emphasis on the logical relationship between different approaches. The survey begins with the developments of matched asymptotic expansions, and concludes with a discussion of perturbative renormalization group techniques, adapted from quantum field theory to differential equations. The renormalization group calculations lead to a new prediction for the drag coefficient, one which can both reproduce and surpass the results of matched asymptotics

    Increased neutralization and IgG epitope identification after MVA-MERS-S booster vaccination against Middle East respiratory syndrome

    Get PDF
    Vaccine development is essential for pandemic preparedness. We previously conducted a Phase 1 clinical trial of the vector vaccine candidate MVA-MERS-S against the Middle East respiratory syndrome coronavirus (MERS-CoV), expressing its full spike glycoprotein (MERS-CoV-S), as a homologous two-dose regimen (Days 0 and 28). Here, we evaluate a third vaccination with MVA-MERS-S in a subgroup of trial participants one year after primary immunization. A booster vaccination with MVA-MERS-S is safe and well-tolerated. Both binding and neutralizing anti-MERS-CoV antibody titers increase substantially in all participants and exceed maximum titers observed after primary immunization more than 10-fold. We identify four immunogenic IgG epitopes, located in the receptor-binding domain (RBD, n=1) and the S2 subunit (n=3) of MERS-CoV-S. The level of baseline anti-human coronavirus antibody titers does not impact the generation of anti-MERS-CoV antibody responses. Our data support the rationale of a booster vaccination with MVA-MERS-S and encourage further investigation in larger trials

    Kinetic modelling of competition and depletion of shared miRNAs by competing endogenous RNAs

    Full text link
    Non-conding RNAs play a key role in the post-transcriptional regulation of mRNA translation and turnover in eukaryotes. miRNAs, in particular, interact with their target RNAs through protein-mediated, sequence-specific binding, giving rise to extended and highly heterogeneous miRNA-RNA interaction networks. Within such networks, competition to bind miRNAs can generate an effective positive coupling between their targets. Competing endogenous RNAs (ceRNAs) can in turn regulate each other through miRNA-mediated crosstalk. Albeit potentially weak, ceRNA interactions can occur both dynamically, affecting e.g. the regulatory clock, and at stationarity, in which case ceRNA networks as a whole can be implicated in the composition of the cell's proteome. Many features of ceRNA interactions, including the conditions under which they become significant, can be unraveled by mathematical and in silico models. We review the understanding of the ceRNA effect obtained within such frameworks, focusing on the methods employed to quantify it, its role in the processing of gene expression noise, and how network topology can determine its reach.Comment: review article, 29 pages, 7 figure

    Neutralization of (NK-cell-derived) B-cell activating factor by Belimumab restores sensitivity of chronic lymphoid leukemia cells to direct and Rituximab-induced NK lysis.

    Get PDF
    Natural killer (NK) cells are cytotoxic lymphocytes that substantially contribute to the therapeutic benefit of antitumor antibodies like Rituximab, a crucial component in the treatment of B-cell malignancies. In chronic lymphocytic leukemia (CLL), the ability of NK cells to lyse the malignant cells and to mediate antibody-dependent cellular cytotoxicity upon Fc receptor stimulation is compromised, but the underlying mechanisms are largely unclear. We report here that NK-cells activation-dependently produce the tumor necrosis factor family member 'B-cell activating factor' (BAFF) in soluble form with no detectable surface expression, also in response to Fc receptor triggering by therapeutic CD20-antibodies. BAFF in turn enhanced the metabolic activity of primary CLL cells and impaired direct and Rituximab-induced lysis of CLL cells without affecting NK reactivity per se. The neutralizing BAFF antibody Belimumab, which is approved for treatment of systemic lupus erythematosus, prevented the effects of BAFF on the metabolism of CLL cells and restored their susceptibility to direct and Rituximab-induced NK-cell killing in allogeneic and autologous experimental systems. Our findings unravel the involvement of BAFF in the resistance of CLL cells to NK-cell antitumor immunity and Rituximab treatment and point to a benefit of combinatory approaches employing BAFF-neutralizing drugs in B-cell malignancies

    Conduct of a personal radiofrequency electromagnetic field measurement study: proposed study protocol

    Get PDF
    Background: The development of new wireless communication technologies that emit radio frequency electromagnetic fields (RF-EMF) is ongoing, but little is known about the RF-EMF exposure distribution in the general population. Previous attempts to measure personal exposure to RF-EMF have used different measurement protocols and analysis methods making comparisons between exposure situations across different study populations very difficult. As a result, observed differences in exposure levels between study populations may not reflect real exposure differences but may be in part, or wholly due to methodological differences. Methods: The aim of this paper is to develop a study protocol for future personal RF-EMF exposure studies based on experience drawn from previous research. Using the current knowledge base, we propose procedures for the measurement of personal exposure to RF-EMF, data collection, data management and analysis, and methods for the selection and instruction of study participants. Results: We have identified two basic types of personal RF-EMF measurement studies: population surveys and microenvironmental measurements. In the case of a population survey, the unit of observation is the individual and a randomly selected representative sample of the population is needed to obtain reliable results. For microenvironmental measurements, study participants are selected in order to represent typical behaviours in different microenvironments. These two study types require different methods and procedures. Conclusion: Applying our proposed common core procedures in future personal measurement studies will allow direct comparisons of personal RF-EMF exposures in different populations and study areas
    corecore