3,095 research outputs found

    Preparation and Characterization of Monolayers and Multilayers of Preformed Polymers

    Get PDF
    In an attempt to study which factors determine the transferability of monolayers of preformed polymers from the air-water interface onto substrates we investigated flexible polymers (poly(octadecylmethacrylates) (PODMAs)) and α-helical polymers (polyglutamates). Pressure-area isotherms show the formation of a liquid-analogous state which depends on temperature and side chain "impurity". Y-mode Langmuir-Blodgett multilayers of these polymers can be formed with a constant transfer ratio under conditions at which a more or less liquid-analogous state exists. Polarized IR spectra suggest that the polyglutamate α helices in the multilayer are oriented with the main axis parallel to the transfer direction and that carbon side chains are practically randomly oriented around the α-helical cylinder. In PODMA multilayers the side chains are perpendicular to the film. In both cases the side chains seem to interdigitate

    Ground state properties of ferromagnetic metal/conjugated polymer interfaces

    Full text link
    We theoretically investigate the ground state properties of ferromagnetic metal/conjugated polymer interfaces. The work is partially motivated by recent experiments in which injection of spin polarized electrons from ferromagnetic contacts into thin films of conjugated polymers was reported. We use a one-dimensional nondegenerate Su-Schrieffer-Heeger (SSH) Hamiltonian to describe the conjugated polymer and one-dimensional tight-binding models to describe the ferromagnetic metal. We consider both a model for a conventional ferromagnetic metal, in which there are no explicit structural degrees of freedom, and a model for a half-metallic ferromagnetic colossal magnetoresistance (CMR) oxide which has explicit structural degrees of freedom. The Fermi energy of the magnetic metallic contact is adjusted to control the degree of electron transfer into the polymer. We investigate electron charge and spin transfer from the ferromagnetic metal to the organic polymer, and structural relaxation near the interface. Bipolarons are the lowest energy charge state in the bulk polymer for the nondegenerate SSH model Hamiltonian. As a result electrons (or holes) transferred into the bulk of the polymer form spinless bipolarons. However, there can be spin density in the polymer localized near the interface.Comment: 7 figure

    Cost Estimate for Molybdenum and Tantalum Refractory Metal Alloy Flow Circuit Concepts

    Get PDF
    The Early Flight Fission-Test Facilities (EFF-TF) team at NASA Marshall Space Flight Center (MSFC) has been tasked by the Naval Reactors Prime Contract Team (NRPCT) to provide a cost and delivery rough order of magnitude estimate for a refractory metal-based lithium (Li) flow circuit. The design is based on the stainless steel Li flow circuit that is currently being assembled for an NRPCT task underway at the EFF-TF. While geometrically the flow circuit is not representative of a final flight prototype, knowledge has been gained to quantify (time and cost) the materials, manufacturing, fabrication, assembly, and operations to produce a testable configuration. This Technical Memorandum (TM) also identifies the following key issues that need to be addressed by the fabrication process: Alloy selection and forming, cost and availability, welding, bending, machining, assembly, and instrumentation. Several candidate materials were identified by NRPCT including molybdenum (Mo) alloy (Mo-47.5 %Re), tantalum (Ta) alloys (T-111, ASTAR-811C), and niobium (Nb) alloy (Nb-1 %Zr). This TM is focused only on the Mo and Ta alloys, since they are of higher concern to the ongoing effort. The initial estimate to complete a Mo-47%Re system ready for testing is =9,000koveraperiodof30mo.TheinitialestimatetocompleteaT111orASTAR811Csystemreadyfortestingis=9,000k over a period of 30 mo. The initial estimate to complete a T-111 or ASTAR-811C system ready for testing is =12,000k over a period of 36 mo

    Coherent photon-photon interactions in very peripheral relativistic heavy ion collisions

    Get PDF
    Heavy ions at high velocities provide very strong electromagnetic fields for a very short time. The main characteristics of ultraperipheral relativistic heavy ion collisions are reviewed, characteristic parameters are identified. The main interest in ultraperipheral heavy ion collisions at relativistic ion colliders like the LHC is the interactions of very high energy (equivalent) photons with the countermoving (equivalent) photons and hadrons (protons/ions). The physics of these interactions is quite different from and complementary to the physics of the strong fields achieved with current and future lasers.Comment: 5 pages, 5 figures, invited talk presented at the ELI Workshop and School on Fundamental Physics with Ultra-high Fields (September 29- October 2, 2008, Frauenwoerth, German

    Cosmological Constant, Gauge Hierarchy and Warped Geometry

    Get PDF
    It is suggested that the mechanism responsible for the resolution of the gauge hierarchy problem within the warped geometry framework can be generalized to provide a new explanation of the extremely tiny vacuum energy density rho_V suggested by recent observations. We illustrate the mechanism with some 5D examples in which the true vacuum energy is assumed to vanish, and rho_V is associated with a false vacuum energy such that rho_V^{1/4} ~ TeV^2/M_{Pl} ~ 10^{-3} eV, where M_{Pl} denotes the reduced Planck mass. We also consider a quintessence-like solution to the dark energy problem.Comment: 10 pages, LaTeX, 2 figures, section on quantum corrections added, version to appear in Phys. Rev.

    Optimized loading of an optical dipole trap for the production of Chromium BECs

    Full text link
    We report on a strategy to maximize the number of chromium atoms transferred from a magneto-optical trap into an optical trap through accumulation in metastable states via strong optical pumping. We analyse how the number of atoms in a chromium Bose Einstein condensate can be raised by a proper handling of the metastable state populations. Four laser diodes have been implemented to address the four levels that are populated during the MOT phase. The individual importance of each state is specified. To stabilize two of our laser diode, we have developed a simple ultrastable passive reference cavity whose long term stability is better than 1 MHz
    corecore