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Mimicking the maximum likelihood estimator, we construct first order Cramer–Rao efficient and explicitly
computable estimators for the scale parameter σ 2 in the model Zi,n = σn−βXi + Yi, i = 1, . . . , n,β > 0
with independent, stationary Gaussian processes (Xi)i∈N, (Yi)i∈N, and (Xi)i∈N exhibits possibly long-
range dependence. In a second part, closed-form expressions for the asymptotic behavior of the corre-
sponding Fisher information are derived. Our main finding is that depending on the behavior of the spectral
densities at zero, the Fisher information has asymptotically two different scaling regimes, which are sep-
arated by a sharp phase transition. The most prominent example included in our analysis is the Fisher
information for the scaling factor of a high-frequency sample of fractional Brownian motion under additive
noise.

Keywords: efficient estimation; fractional Brownian motion; Fisher information; regular variation; slowly
varying function; spectral density

1. Introduction

Let (Xi)i∈N and (Yi)i∈N be independent Gaussian processes with known distribution. Suppose
that we observe Z := Zn := (Z1,n, . . . ,Zn,n) with

Zi,n = σn−βXi + Yi, i = 1, . . . , n and β,σ > 0. (1.1)

In our framework, the parameter β is assumed to be known. We are interested in the case where
(Xi)i∈N is stationary and (Yi)i∈N is a noise process. Our theory includes white noise and incre-
ments of white noise as special cases for (Yi)i∈N (cf. Assumption 2). The problem, which we
address in this work, is asymptotically optimal estimation of the scale parameter σ 2. In order to
understand its asymptotic properties, the key ingredient is knowledge of the Fisher information,
for which closed-form expressions will be derived as well.
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Our study is motivated by estimation of the variance σ 2 of a fractional Brownian motion (fBM)
(BH

t )t≥0 at time points i/n, i = 1, . . . , n, under additive Gaussian white noise (WN), that is,

Vi,n := σBH
i/n + τεi, i = 1, . . . , n. (1.2)

Here, H refers to the Hurst index (or self-similarity parameter) and (εi)i is a sequence of i.i.d.
standard normal random variables. This model has attracted a lot of attention, recently (cf. Gloter
and Hoffmann [12,13] and for the special case H = 1/2, cf. Stein [23], Gloter and Jacod [14,15],
as well as Cai et al. [6]). Let us call it the fBM + WN model and note that the increment vector
is of type (1.1) with β = H . This shows that models (1.1) and (1.2) coincide, if Xi and Yi are
chosen as the increments nH (BH

i/n − BH
(i−1)/n) and τ(εi,n − εi−1,n), with ε0,n := 0, respectively.

Estimation of σ 2 (and H ) was discussed in slightly more general settings than the fBM + WN
model by Gloter and Hoffmann [12,13]. In these papers, it was proven that for H > 1

2 the optimal
rate of convergence for σ 2 is n−1/(4H+2). More extensively studied and of particular interest is
the case H = 1

2 , due to its applications to high-frequency modeling of stock returns. For this case,
the asymptotic Fisher information is known to be n1/2(8τσ 3)−1(1 + o(1)) (cf. Gloter and Jacod
[14,15], and Cai et al. [6]). This result had a big impact as a benchmark for estimation of the
integrated volatility (cf. Barndorff-Nielsen et al. [1], Podolskij and Vetter [18], Jacod et al. [16],
and Zhang [25]) as well as for the asymptotic equivalence theorem by Reiß [20]. The fact that
the multiplicative inverse of the asymptotic Fisher information is linear in τ and proportional to
the cube of σ is surprising and requires further understanding.

The main contribution of our work to the existing literature is that for 0 < H < 1, the Fisher
information In

σ 2 for estimation of σ 2 in the fBM + WN model is given by

In
σ 2 = n1/(2H+1)σ−(8H+2)/(2H+1)τ−2/(2H+1)cH + o

(
n1/(2H+1)

)
, (1.3)

where cH is a constant only depending on H (for an explicit expression of cH , cf. Corollary 1).
In general, we focus on the situation, where the Fisher information converges to infinity for

n → ∞, which corresponds to consistent estimation of σ 2. In view of n−βXi = Op(n−β) and
Yi = Op(1), it is not clear at all that there are such situations. In fact, the rate at which the Fisher
information tends to infinity can be rather unexpected. In a first place, one might guess that the
optimal rate of convergence for estimation of the “parameter” σ 2n−2β is n−1/2 and hence the
Fisher information of σ 2 should be of the order n1−4β (corresponding to the rate of convergence
n2β−1/2). However, this heuristic reasoning is in general not true and better rates can be obtained,
as, for instance, in (1.3). Surprisingly, the asymptotic Fisher information has two different scaling
regimes. In fact we will see that for any pair (Xi)i and (Yi)i there is a positive characteristic ♦
such that (up to sub-polynomial factors) In

σ 2 ∝ n1−♦β if ♦ < 4 and In
σ 2 ∝ n1−4β if ♦ ≥ 4. The

latter appears to be the same rate as in our heuristic argument above. Altogether, the different
scaling behavior becomes visible as elbow effect in the convergence rate of σ 2. As a curious
fact, let us mention that the spectral densities of the processes do not need to be known explicitly
in order to compute the proposed estimator or the asymptotic Fisher information.

It is a classical result that if we observe a sample of a stationary Gaussian process with a
spectral density h(θ, ·), the asymptotic Fisher information In

θ for estimation of a one-dimensional
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parameter θ is given by (cf. Davies [8] and Dzhaparidze [9] for the general case as well as Fox
and Taqqu [10], Dahlhaus [7], Giraitis and Surgailis [11] for long-range dependent processes)

In
θ = n

2π

∫ π

0

(
∂θ logh(θ,λ)

)2 dλ + o(n). (1.4)

In Theorem 2, we prove that under fairly general conditions on (Xi)i , a result of the type (1.4)
holds for θ = σ 2 in model (1.1). One should notice that our setting is nonstandard and not covered
within the existing literature. In contrast, due to the factor n−β , we cannot work with a fixed h but
rather have to consider a sequence of spectral densities (hn)n with degenerate limit. Furthermore,
we are not in the classical parametric estimation setting, that is, In

σ 2 may diverge with a rate
which is much slower than n. As, for example, in (1.3), we need therefore to prove (1.4) with an
approximation error which is of smaller order than o(n). This in turn implies that very precise
control on the (large) noise process (Yi)i has to be imposed (cf. Assumption 2). Let us also
mention that we cover both cases, long and short-range dependence of (Xi)i . In particular, this
allows to treat model (1.2) for all H ∈ (0,1).

The work is organized as follows. In Section 2.1, we construct the estimator and investigate
its theoretical properties. Closed-form expressions for the Fisher information are derived in Sec-
tion 2.2. In particular, we give some heuristic arguments why different scaling regimes appear.
To illustrate the results, some examples are provided in Section 3. Proofs are deferred to the
Appendix and the Supplement [22].

Notation: We write X := Xn := (X1, . . . ,Xn), Y := Yn := (Y1, . . . , Yn) and Z := Zn :=
(Z1,n, . . . ,Zn,n). For two sequence (ak)k and (bk)k , we say that ak ∼ bk iff limk→∞ ak/bk = 1.
Similar, for two functions g1 and g2, we write g1(λ) ∼ g2(λ) (for λ ↓ 0) iff limλ↓0 g1(λ)/

g2(λ) = 1.

2. Main results

Let U = Un be an n-dimensional, centered Gaussian vector with positive definite covariance
matrix 	θ , depending on a one-dimensional parameter θ ∈ R. The log-likelihood function is

L(u|θ) = −n

2
log(2π) − 1

2
log
(|	θ |

)− 1

2
ut	−1

θ u

with |	θ | the determinant of 	θ . Let ∂θ	θ denote the entrywise derivative of 	θ with respect to θ

(which we assume to exist). Since ∂θ log(|	θ |) = tr(	−1
θ ∂θ	θ ) and ∂θ	

−1
θ = −	−1

θ (∂θ	θ )	
−1
θ ,

we find for the score function

L̇(U|θ) := ∂θL(U|θ) = − 1
2 tr
(
	−1

θ ∂θ	θ

)+ 1
2 Ut	−1

θ (∂θ	θ )	
−1
θ U.

In distribution, U = 	
1/2
θ ξ for an n-dimensional standard normal vector ξ . Together with some

algebra this shows that the Fisher information for θ is In
θ = 1

2 tr([(∂θ	θ )	
−1
θ ]2) (cf. also Porat

and Friedlander [19]). In particular, for model (1.1) we obtain

In
σ 2 = 1

2 tr
([

n−2β Cov(X)Cov(Z)−1]2). (2.1)
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To simplify the notation, we will view In
σ 2 in the following always as a sequence in n.

2.1. An asymptotically Cramer–Rao efficient estimator

In this section, we construct an explicitly computable estimator which mimics the MLE. Further-
more, we prove that the mean squared error (MSE) of this estimator is first order optimal (cf.
Theorem 1). All the results in this section work under fairly general conditions. In fact, we only
require that Cov(X) and Cov(Y) are known and positive definite for all n as well as divergence
of the Fisher information. In particular, we neither have to impose stationarity on (Xi)i or (Yi)i
nor do we assume that Cov(X) and Cov(Y) have the same set of eigenvectors.

The construction will be done in several steps. First, we can find n×n matrices A and D such
that Cov(Y) = AtA, DtD = idn (the identity), and D diagonalizes (A−1)t Cov(X)A−1. Hence,
� := (A−1D)t Cov(X)(A−1D) is diagonal and the diagonal entries are denoted by λ1, . . . , λn.
The maximum likelihood equation in the transformed model (Z̃1,n, . . . , Z̃n,n)

t := (A−1D)tZ
motivates to consider the oracle estimator

σ̂ 2
oracle := (

2In
σ 2

)−1
n∑

i=1

λin
−2β(Z̃2

i,n − 1)

(σ 2n−2βλi + 1)2
= σ 2 + (2In

σ 2

)−1
n∑

i=1

λin
−2β(Z̃2

i,n − EZ̃2
i,n)

(σ 2n−2βλi + 1)2
. (2.2)

To verify the equality, one should note that by rewriting (2.1)

In
σ 2 = 1

2

n∑
i=1

λ2
i n

−4β

(σ 2λin−2β + 1)2
.

Observe that the oracle estimator (2.2) is unbiased and attains the Cramer–Rao bound since
Var(̂σ 2

oracle) = (In
σ 2)

−1. Oracle estimators depend on the unknown quantities itself, and are thus
not computable. Below, we derive a simple construction for a statistical estimator which mimics
σ̂ 2

oracle and is asymptotically sharp. Similar as in [6], we use a sample splitting technique. First,
we take a small part of the data in the transformed model, which are used for a preliminary
estimate, say σ̃ 2, of σ 2. In a second step, we plug σ̃ 2 into (2.2). Discarding all indices, which
were already used for σ̃ 2 gives an estimator, which as we show has asymptotically the same
properties as σ̂ 2

oracle. This implies then the first order Cramer–Rao efficiency.
The next lemma ensures that sample splitting can be done.

Lemma 1. For u > 0 and B ⊂ {1, . . . , n}, let

IB
u := 1

2

∑
i∈B

λ2
i n

−4β

(uλin−2β + 1)2
.

Then there is a sequence of index sets (An)n with An ⊂ {1, . . . , n} such that

I
An

1 → ∞ and
I

An

1

In
1

→ 0 as n → ∞.
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Proof. Note that 0 ≤ ci,n := λ2
i n

−4β(n−2βλi + 1)−2 < 1. Consider the partial sums Sk =∑k
i=1 ci,n and observe that Sk+1 − Sk ≤ 1 as well as Sn = In

1 → ∞. Therefore, we can find
k∗(n), s.t.

√
In

1 ≤ Sk∗(n) ≤√
In

1 + 1. The result follows with An = {1, . . . , k∗(n)}. �

Throughout this section, let (An)n be as in the previous lemma and pick a sequence (δn)n,
satisfying δn ≤ 1, δn → 0, and δ4

nI
An

1 → ∞. A possible choice is δn = (I
An

1 )−1/8. Observe that

V := (
2I

An

1

)−1 ∑
i∈An

λin
−2β(Z̃2

i,n − 1)

(n−2βλi + 1)2
= σ 2 + (

2I
An

1

)−1 ∑
i∈An

λin
−2β(Z̃2

i,n − EZ̃2
i,n)

(n−2βλi + 1)2

has expectation σ 2 and variance bounded by (σ 4 ∨ 1)(I
An

1 )−1. Now, we define the preliminary
estimator σ̃ 2, as the truncated version of V ,

σ̃ 2 := (V ∨ δn) ∧ δ−1
n . (2.3)

This allows us to construct the final estimator σ̂ 2
n for σ 2. Let Ac

n = {1, . . . , n} \ An and set

σ̂ 2
n := (

2I
Ac

n

σ̃ 2

)−1 ∑
i∈Ac

n

λin
−2β(Z̃2

i,n − 1)

(̃σ 2n−2βλi + 1)2
= σ 2 + (

2I
Ac

n

σ̃ 2

)−1 ∑
i∈Ac

n

λin
−2β(Z̃2

i,n − EZ̃2
i,n)

(̃σ 2n−2βλi + 1)2
. (2.4)

One should note the similarity to the oracle σ̂ 2
oracle as introduced in (2.2). As the following the-

orem shows, σ̂ 2
n has in fact the same asymptotic MSE as the oracle, implying Cramer–Rao effi-

ciency.

Theorem 1. Suppose that the Fisher information diverges and Cov(Y) is positive definite. The
estimator σ̂ 2

n defined in (2.4) attains the Cramer–Rao bound asymptotically over every compact
set, not containing zero, that is, for 0 < σmin < σmax < ∞,

lim
n→∞ sup

σ∈[σmin,σmax]
In
σ 2 · MSE

(
σ̂ 2

n

)= 1.

2.2. Closed-form expressions for the Fisher information

So far we have seen that there are estimators which are asymptotically Cramer–Rao efficient.
However, in order to get some understanding of the asymptotics, we need to study the behavior
of the Fisher information. In this section, we derive explicit closed-form expressions.

To state the results, some definitions, in particular from regular variation theory, are unavoid-
able. For the notion of quasi-monotone and slowly varying functions see the monograph [3].
A positive sequence (rj )j is called O-regularly varying if for any λ > 1,

0 < lim
n→∞

r�λn�
rn

< lim
n→∞

r�λn�
rn

< ∞
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with �·� the Gauss bracket. For real sequences (aj )j , O-regularly varying quasi-monotonicity is
equivalent to the existence of a positive, nondecreasing, and O-regularly varying sequence (rj )j
such that the sequence (aj /rj )j is decreasing. We say that a sequence (aj )j is general monotone
if there are finite constants C,J0, such that for any positive integer J ≥ J0,

∑2J−1
j=J |aj+1 −aj | ≤

C|aJ |. The class of general monotone sequences will be denoted by GM. It was introduced and
studied recently by Belov [2] and Tikhonov [24]. To simplify some arguments, we have relaxed
the original definition slightly by introducing J0 (this does not cause any trouble and all results
on GM sequences can be transferred with obvious changes). The class GM is fairly general in
the sense that it includes all well-known generalizations of monotone sequences, such as quasi-
monotonicity, regularly quasi-monotonicity, O-regularly-quasi-monotonicity and sequences of
rest bounded variation.

In order to deal with boundary problems (cf. the second example in Section 3), we assume that
(Xi)i is only approximately stationary in the following sense.

Assumption 1 (Assumptions on X). Suppose that there is a stationary process (X′
i )i and a

process (Ri)i such that in distribution

Xi = X′
i + Ri for all i ∈ N

and (X′
i )i and (Ri)i have the following properties.

(i) There is a positive and quasi-monotone slowly varying function  : (0,∞) → R
+, satisfy-

ing

(xκ(x))

(x)
→ 1, x → ∞ for all κ ∈ R (2.5)

such that for an index α ∈ (−1/2,1/2),

γk := Cov
(
X′

1,X
′
1+k

)∼ sign(−α)k−2α−1(k) as k → ∞. (2.6)

(ii) With X′
n := (X′

1, . . . ,X
′
n), Rn := (R1, . . . ,Rn) and ‖ · ‖2 the Frobenius norm, we have the

uniform bound

sup
n

∥∥Cov
(
X′

n,Rn

)∥∥
2 + ∥∥Cov(Rn)

∥∥
2 < ∞. (2.7)

Throughout the following, we interpret the autocovariance (γk)k∈Z as a sequence on Z via
γk = γ−k . An example for a (quasi-)monotone slowly varying  is the logarithm log(1 + ·).
However, (2.5) does not hold for every slowly varying function. A stronger condition, which
implies (2.5) is

lim
λ→0

(
(aλ)

(λ)
− 1

)
log(λ) = 0 for an a > 1

(cf. Theorem 1 in [4]). As a consequence (2.5) holds whenever limλ→∞ (λ) ∈ (0,∞). Moreover,
if it is true for  then also for μ, μ ≥ 0.
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The n × n matrix � denotes the backward difference operator, that is,

� =

⎛⎜⎜⎝
1

−1 1
. . .

. . .

−1 1

⎞⎟⎟⎠ . (2.8)

For a vector v = (v1, . . . , vn)
t , �v = (v1 − v0, v2 − v1, . . . , vn − vn−1)

t with v0 := 0 is the
backwards difference process. Furthermore, the transposed matrix �t is the negative forward
difference operator �tv = −(v2 − v1, v3 − v2, . . . , vn+1 − vn)

t with vn+1 := 0. We assume that
for a nonnegative integer K , the process Y is generated by taking the K th finite difference of a
white noise process (alternating between forward and backward differences).

Assumption 2. Given a nonnegative integer K and τ > 0, assume that Y is an n-dimensional,
centered Gaussian random vector with covariance matrix τ 2(��t)K or τ 2(�t�)K .

Assumption 2 imposes in fact a very serious restriction, but seems to be somehow unavoidable
in order to prove the statement (cf. also the discussion in the Introduction). Our results could
be worked out under more general boundary conditions of the difference operator, of course.
It is indeed sufficient that Cov(Y) can be perfectly diagonalized by a discrete sine or cosine
transform. However, since the assumption above is somehow the most natural one and allows to
treat the fBM + WN model, we will restrict ourselves to it for sake of simplicity.

Let throughout the paper f =∑∞
k=−∞ γk cos(k·) denote the spectral density of (X′

i )i∈N. Al-
though X and Y are stationary only up to boundary values, we will refer occasionally to

f,4Kτ 2 sin2K

( ·
2

)
and hn = σ 2n−2βf + 4Kτ 2 sin2K

( ·
2

)
(2.9)

as the spectral density of the processes X, Y, and Z, respectively. Because of the imposed inde-
pendence of (Xi)i and (Yi)i , hn is the sum of the spectral densities of X and Y.

Define

rn :=
{

n1−β/(K−α)
(

(
nβ/(K−α)

))1/(2K−2α) + n1−4β, if K − α �= 1
4 ,

n1−4β log(n)2(n), if K − α = 1
4 .

(2.10)

Now, we are ready to state the main results of the paper. Surprisingly, it turns out that the rates
depend on K and α only through their (inverted) difference, that is, the problem is characterized
by

♦ := 1

K − α
.

Theorem 2. Work in model (1.1) under Assumptions 1 and 2 and suppose that K − α >

max{β, (4α + 1)β,1/4}. Further assume that either:

1. α ∈ (0,1/2), (γk)k is O-regularly varying quasi-monotone, and
∑∞

k=−∞ γk = 0, or
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2. α ∈ (−1/4,0) and (γk)k ∈ GM, or
3. α ∈ (−1/2,−1/4] and there exists a constant C1, such that for any p ∈ N, |γp+1 − γp| ≤

C1|γp|p−1.

Then, the Fisher information of σ 2 based on n observations is given by

In
σ 2 = n1−4β

2π

∫ π

0

f 2(λ)

h2
n(λ)

dλ
(
1 + o(1)

)+ o(rn). (2.11)

If the condition K −α > max{β, (4α + 1)β,1/4} is replaced by the weaker assumption K −α >

max{β, (4α + 1)β}, imposing additionally log(n)2(n) → ∞ in the critical case K − α = 1/4,
then (2.11) holds as well, provided there exists a constant cf , such that∣∣f (λ) − f (μ)

∣∣≤ cf λ2α−2|λ − μ| for all 0 < λ ≤ μ ≤ π. (2.12)

Let

C(♦, α) := (2 − ♦)♦
8 sin(♦π/2)

(
2 sign(−α)�(−2α) cos(πα)

)♦/2
.

Theorem 3. Under the assumptions of Theorem 2, the asymptotic Fisher information is explicitly
given by

In
σ 2 ∼ n1−♦β

(

(
n♦β

))♦/2
σ♦−4τ−♦C(♦, α) if ♦ < 4 (2.13)

and

In
σ 2 ∼ n1−4β

2πτ 4

∫ π

0
f 2(λ)dλ = n1−4β

2τ 4

∞∑
k=−∞

γ 2
k if ♦ > 4. (2.14)

For  = |logρ(·)|, ρ > −1/2,

In
σ 2 ∼ n1−4β(logn)2ρ+1τ−4 (4β)2ρ+1

2ρ + 1
if ♦ = 4. (2.15)

Corollary 1. In the fBM + WN model (1.2) with H ∈ (0,1), it holds that

♦ = 2

2H + 1
< 4

and the asymptotic Fisher information for σ 2 is given by (1.3) with

cH := H sin1/(2H+1)(πH)�(2H + 1)1/(2H+1)

(2H + 1)2 sin(π/(2H + 1))
,

where �(·) denotes the Gamma function.
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Proofs of the statements are deferred to the Appendix. Let us conclude the section by some
comments on Theorems 2 and 3.

First, observe that (2.11) is of the type (1.4) for θ = σ 2. The surprising fact is that one can
compute the integral

∫ π
0 f 2(λ)/h2

n(λ)dλ obtaining expressions which for ♦ < 4 do not depend
on f anymore. Let us shortly explain this. Suppose that Assumption 1 holds with  = 1. By
classical results, we can conclude that for λ ↓ 0, f (λ) ∼ Cαλ2α and hn(λ) ∼ Cασ 2n−2βλ2α +
τ 2λ4K with Cα = 2 sign(−α)�(−2α) cos(πα). Next, observe that for small λ, f 2(λ)/h2

n(λ) ≈
n4β whereas for large values the integrand behaves like λ4α−4K . Now, ♦ ≤ 4 is equivalent to
4α − 4K < −1 and in this case the integral will be determined in first order by f 2(λ)/h2

n(λ) for
small λ. Therefore, one expects that f and hn can be replaced by their corresponding small value
approximations Cαλ2α and Cασ 2n−2βλ2α + τ 2λ4K , respectively, and∫ π

0

f 2(λ)

h2
n(λ)

dλ ≈ σ−4n4β

∫ π

0

(
1 + C−1

α σ−2τ 2n2βλ2K−2α
)−2 dλ.

The r.h.s. can be explicitly solved and does not depend on f . In contrast to that, for ♦ > 4, the
Fisher information depends also asymptotically on the whole spectrum (0,π]. This is why we
need the additional assumption (2.12) which controls the continuity of f globally.

The phase transition for ♦ = 4 does not only affect the asymptotic constant but also leads
to an elbow phenomenon in the rate of convergence for estimation of σ 2. If ♦ ≤ 4 the optimal
rate (neglecting sub-polynomial factors in the following) is n♦β/2−1/2 whereas for ♦ > 4, it is
n2β−1/2. The latter only depends on β . Typically, if in an estimation problem an elbow effect
occurs there are different sources of errors which cannot be balanced and therefore the best
attainable rate is given by the maximum of the single error rates. However, in our situation the
optimal rate turns out to be the minimum, more precisely it is min(n♦β/2−1/2, n2β−1/2).

Let us also shortly remark on the dependence of the asymptotic Fisher information on the
scaling coefficient σ . Write p = ♦/4 and θ = σ 2. Choosing Qn(τ,α,♦) appropriately, we find
that the Fisher information for θ observing U ∼ N (θp,Qn) if p < 1 and U ∼ N (θ,Qn) if p ≥ 1
coincides in first order with (2.13)–(2.15) (standardizing X such that

∑∞
k=−∞ γ 2

k = 1 if p > 1).
Hence, in an asymptotic sense our original statistical estimation problem is related to a Gaussian
shift model where we want to estimate the pth power (p ≤ 1) of the mean value.

Our results also cover the case α ∈ (−1/2,−1/4) for which the autocovariance function is not
(square) summable. In fact, the proof turns out to be very subtle and requires quite restrictive con-
ditions. In particular, we have to impose an assumption on the increments of the autocovariance
which is much stronger than GM.

In the critical case ♦ = 4 an additional log-factor appears in the rate of convergence. In The-
orem 3, we have restricted ourselves to the (most important) case where  is a power of the
logarithm, which allows to evaluate the asymptotic Fisher information in closed form. However,
from the proof one can follow a slightly more general version, namely that under the assumptions
of Theorem 2 (in particular log(n)2(n) → ∞) and with qn := n−4β2(n4β),

In
σ 2 = n1−4βτ−4

∫ 1

qn

2
(

1

λ

)
dλ

λ

(
1 + o(1)

)+ o
(
nqn log(n)

)
.

Theorems 2 and 3 are derived for all α ∈ (−1/2,1/2), α �= 0. The case α = 0 is indeed special
since as α → 0, |C(♦, α)| → ∞. However, in the fBM +WN model (1.2) (recall that H = 1/2−
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α) this phenomenon does not play a role because of (λ) = const. = H |2H −1|, which converges
to zero (fast enough) as H → 1/2. This explains why cH is continuous for all H ∈ (0,1), whereas
in general α �→ C(♦, α) is not.

Besides the classical case H = 1/2, which was mentioned already in the Introduction, one
can easily simplify the asymptotic Fisher information in the fBM + WN model (1.2) for H ∈
{1/4,3/4}. Indeed, as a consequence of Corollary 1, we obtain for the multiplicative inverse
(which is the asymptotic variance of our estimator)

H = 1/4:
(
In
σ 2

)−1 ∼ 27√
3π1/3

σ 8/3τ 4/3n−2/3 ≈ 10.64σ 8/3τ 4/3n−2/3,

H = 1/2:
(
In
σ 2

)−1 ∼ 8σ 3τn−1/2,

H = 3/4:
(
In
σ 2

)−1 ∼ 25
√

5 + √
5√

237/5π1/5
σ 16/5τ 4/5n−2/5 ≈ 8.12σ 16/5τ 4/5n−2/5.

Finally, one should notice that the elbow effect observed in Gloter and Jacod [14] does not relate
to our results. In fact they have studied the fBM + WN model for H = 1/2 (i.e., BM + WN),
where the variance of the noise is allowed to depend on n. With the notation of model (1.1), the
change in the rate appears as β ↓ 0. In particular, they also discuss the case β < 0 in which
the classical n−1/2-rate can be achieved. In our framework, β < 0 corresponds to estimation of
the scaling parameter of (Yi)i .

3. Examples

In the Introduction, we have already discussed the main example of estimating the scale param-
eter of fractional Brownian motion under Gaussian measurement noise. The solution is given in
(1.3) (cf. also Corollary 1). In order to provide some further illustration of the derived results, we
discuss two estimation problems for which the Fisher information can be explicitly computed.

Large measurement error: Let (Xi)i denote a stationary process with long-range dependence.
More precisely, assume that for constants A,C, and self-similarity parameter H ∈ (1/2,1), the
autocovariance satisfies γk ∼ Ak2H−2, |γk+1 −γk| ≤ Cγk/k and for H ∈ (1/2,3/4), additionally∑∞

k=−∞ γ 2
k = 1. Suppose that we observe the scaled process (Xi)i under large noise, that is,

Zi,n = σXi + τnβεi, i = 1, . . . , n,0 < β < H − 1/2.

Now, with the notation of Theorem 3, α = 1/2 −H and ♦ = 2/(2H − 1). In particular ♦ > 4 for
H ∈ (1/2,3/4) and ♦ < 4 for H ∈ (3/4,1). Therefore, an elbow effect occurs at H = 3/4 and
the Fisher information is determined in first order by

In
σ 2 ∼ n1−4β

2τ 4
, H ∈

(
1

2
,

3

4

)
,

I n
σ 2 ∼ 4β

n1−4β log(n)

τ 4
, H = 3

4
,
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In
σ 2 ∼ n(2H−1−2β)/(2H−1)σ−(8H−6)/(2H−1)

× τ−2/(2H−1) (2A�(2H − 1) sin(πH))1/(2H−1)

(2H − 1)2 sin(π/(2H − 1))
, H ∈

(
3

4
,1

)
.

Integrated fractional Brownian motion: Suppose that we are interested in efficient estimation
of σ 2 given observations (V1,n, . . . , Vn,n),

Vi,n = σ

∫ 1

i/n

BH
s ds + τεi, i = 1, . . . , n, εi

i.i.d.∼ N (0,1),H ∈ (0,1/4),

and (BH
t )t is a fBM, which is independent of the WN. With � as in (2.8), Xi := ∫ i

i−1 BH
s ds −∫ i−1

0∨(i−2)
BH

s ds, and ε = (ε1, . . . , εn), consider

��t(V1,n, . . . , Vn,n)
t D= (

σn−1−H Xi

)
i=1,...,n

+ τ��tεt

and note that (Xi)i≥2 is stationary. By defining R1 appropriately, it is straightforward to verify
Assumption 1. In particular, we find that (2.7) is bounded by � n4H−1 ≤ 1 and γk ∼ H(2H −
1)k2H−2. Therefore,  = H(1 − 2H), α = 1/2 − H,K = 2 and β = 1 + H imply

♦ = 2

2H + 3
< 4

and the Fisher information is given by

In
σ 2 ∼ n1/(2H+3)σ−(8H+10)/(2H+3)τ−2/(2H+3) (H + 1) sin1/(2H+3)(πH)�(2H + 1)1/(2H+3)

(2H + 3)2 sin(π/(2H + 3))
.

Appendix: Proofs

A.1. Proof of Theorem 1

Lemma A.1. Let σ̃ 2 be as defined in (2.3). Given 0 < σ < σ < ∞, there exists an N = N(σ,σ )

such that for all n ≥ N and for all η > 0,

sup
σ∈[σ,σ ]

P
(∣∣̃σ 2 − σ 2

∣∣≥ (
I

An

1

)−1/2 max
(
1, σ 2)η)≤ 2e1/4−η/

√
8.

Proof. Since δn → 0, we can choose N such that for all n ≥ N , δn ≤ σ 2 and δ−1
n ≥ σ 2. Then, for

σ 2 ∈ [σ ,σ ], |̃σ 2 −σ 2| ≤ |V −σ 2|. Let α1, α2, . . . be a sequence of i.i.d. χ2
1 random variables. By

Proposition 6 in Rohde and Dümbgen [21] (similar statements have been derived also elsewhere,
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for another reference see, for instance, Johnstone [17], p. 74), for a vector (μi)i∈An of real-valued
numbers

P

(∣∣∣∣∑
i∈An

μi(αi − 1)

∣∣∣∣≥ √
2‖μ‖2η

)
≤ 2e1/4−η/

√
8.

Note that in distribution, V − σ 2 =∑
i∈An

μi(αi − 1) with

μi = (
2I

An

1

)−1 λin
−2β(σ 2n−2βλi + 1)

(n−2βλi + 1)2
.

Application of the exponential inequality above together with ‖μ‖2 ≤ (2I
An

1 )−1/2 max(σ 2,1)

yields the result. �

Proof of Theorem 1. Due to the independence of (Z̃i)i∈An and (Z̃i)i∈Ac
n
, the estimator σ̂ 2 is

unbiased. In addition, using Lemma 1, the theorem is proved once we have established that

(I): sup
σ∈[σ,σ ]

|Var(̂σ 2) − E(I
Ac

n

σ̂ 2 )−1|
(In

σ 2)
−1

= o(1) and

(II): sup
σ∈[σ,σ ]

|E(I
Ac

n

σ̂ 2 )−1 − (I
Ac

n

σ 2 )−1|
(In

σ 2)
−1

= o(1).

In the following, we make frequently use of the following observation. For any set B ⊆
{1, . . . , n},

min

(
1,

(
v

u

)2)
IB
v ≤ IB

u ≤ max

(
1,

(
v

u

)2)
IB
v .

(I): Writing E[·] = E[E[·|(Z̃i,n)i∈An]],

∣∣Var
(
σ̂ 2)− E

(
I

Ac
n

σ̃ 2

)−1∣∣ = 2

∣∣∣∣E[(2I
Ac

n

σ̃ 2

)−2 ∑
i∈Ac

n

λ3
i n

−6β(σ 2 − σ̃ 2)

(̃σ 2λin−2β + 1)4

((
σ 2 + σ̃ 2)λin

−2β + 2
)]∣∣∣∣

≤ 2E

[(
2I

Ac
n

σ̃ 2

)−1
∣∣∣∣σ 2

σ̃ 2
− 1

∣∣∣∣(3 +
∣∣∣∣σ 2

σ̃ 2
− 1

∣∣∣∣)],
where we used the inequalities

∑
i∈Ac

n

λ4
i n

−8β

(̃σ 2λin−2β + 1)4
≤ 2

σ̃ 4
I

Ac
n

σ̃ 2 and
∑
i∈Ac

n

λ3
i n

−6β

(̃σ 2λin−2β + 1)4
≤ 1

σ̃ 2
I

Ac
n

σ̃ 2 .
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Therefore

sup
σ∈[σ,σ ]

E

[(
I

Ac
n

σ̃ 2

)−1
∣∣∣∣σ 2

σ̃ 2
− 1

∣∣∣∣] = sup
σ∈[σ,σ ]

∫
P
[∣∣σ 2 − σ̃ 2

∣∣≥ σ̃ 2I
Ac

n

σ̃ 2 t
]

dt

≤
∫

sup
σ∈[σ,σ ]

P
[∣∣σ 2 − σ̃ 2

∣∣≥ δnI
Ac

n

1 t
]

dt.

Application of Lemma A.1 together with
∫∞

0 exp(−At)dt = A−1 yields

sup
σ∈[σ,σ ]

E

[(
I

Ac
n

σ̃ 2

)−1
∣∣∣∣σ 2

σ̃ 2
− 1

∣∣∣∣]�
(
δ2
nI

An

1

)−1/2(
I

Ac
n

1

)−1
.

Similar,

sup
σ∈[σ,σ ]

E

[(
I

Ac
n

σ̃ 2

)−1
∣∣∣∣σ 2

σ̃ 2
− 1

∣∣∣∣2] = sup
σ∈[σ,σ ]

∫
P
[∣∣σ 2 − σ̃ 2

∣∣≥ σ̃ 2(IAc
n

σ̃ 2

)1/2√
t
]

dt

≤
∫

sup
σ∈[σ,σ ]

P
[∣∣σ 2 − σ̃ 2

∣∣≥ δn

(
I

Ac
n

1

)1/2√
t
]

dt

and because of
∫∞

0 exp(−A
√

t)dt = 2A−2,

sup
σ∈[σ,σ ]

E

[(
I

Ac
n

σ̃ 2

)−1
∣∣∣∣σ 2

σ̃ 2
− 1

∣∣∣∣2]�
(
δ2
nI

An

1

)−1(
I

Ac
n

1

)−1
.

By definition δ2
nI

An

1 → ∞. Since for sufficiently large n, by Lemma 1,

In
σ 2 ≤ max

(
1, σ−4)In

1 ≤ 2 max
(
1, σ−4)IAc

n

1 , (A.1)

it follows that

sup
σ∈[σ,σ ]

|Var(̂σ 2) − E(I
Ac

n

σ̃ 2 )−1|
(In

σ 2)
−1

� I
Ac

n

1 sup
σ∈[σ,σ ]

∣∣Var
(
σ̂ 2)− E

(
I

Ac
n

σ̃ 2

)−1∣∣= o(1).

(II): From Taylor expansion, we find that for positive x, y, |x−2 − y−2| ≤ 2(min(x, y))−3|x −
y|. Therefore, we can bound

I
Ac

n

σ 2 − I
Ac

n

σ̃ 2 = 1

2

∑
i∈Ac

n

n−4βλ2
i

(
1

(σ 2n−2βλi + 1)2
− 1

(̃σ 2n−2βλi + 1)2

)
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by

∣∣IAc
n

σ 2 − I
Ac

n

σ̃ 2

∣∣ ≤ ∑
i∈Ac

n

n−6βλ3
i

(min(σ 2, σ̃ 2)n−2βλi + 1)3

∣∣σ 2 − σ̃ 2
∣∣

= 2 max
(
σ−2, σ̃−2)IAc

n

σ 2∧σ̃ 2

∣∣σ 2 − σ̃ 2
∣∣

≤ (
σ−6 + 1

)
δ−2
n I

Ac
n

σ̃ 2

∣∣σ 2 − σ̃ 2
∣∣.

Thus,

sup
σ∈[σ,σ ]

I
Ac

n

σ 2

∣∣E(IAc
n

σ̃ 2

)−1 − (
I

Ac
n

σ 2

)−1∣∣� δ−2
n

∫
sup

σ∈[σ,σ ]
P
(∣∣σ 2 − σ̃ 2

∣∣≥ t
)

dt �
(
δ4
nI

An

1

)−1/2 → 0.

Using (A.1), the convergence in (II) follows and this completes the proof of Theorem 1. �

A.2. Notation and remarks for the results in Section 2.2

Let us first give some notation. Whenever it is clear from the context, we omit the index n. In
particular, we suppress the index n of the spectral density hn = h and the estimator σ̂ 2

n = σ̂ 2.
Inequalities for Hermitian matrices should be understand in the sense of partial Loewner order-
ing. The matrix norms ‖ · ‖2 and ‖ · ‖∞ denote the Frobenius and spectral norm, respectively.
Furthermore, we write ∧ and ∨ for the minimum/maximum and

ui := ui,n := π
2i − 1

2n + 1
. (A.2)

The last definition occurs frequently in connection with finite-dimensional approximations due
to the transformation property of the discrete cosine transform. Let �·� be the Gauss bracket. As
in (2.10), we denote by (rn)n the rate at which the Fisher information tends to infinity (this still
needs to be proved, of course). For technical reasons, however, it will be chosen in the following
as an integer sequence, that is,

rn :=
{⌊

n1−β/(K−α)
(

(
nβ/(K−α)

))1/(2K−2α) + n1−4β
⌋
, if ♦ �= 4,⌊

n1−4β log(n)2(n)
⌋
, if ♦ = 4.

This definition will be used at many places throughout the proofs. In particular, one should keep
in mind that urn = O(rn/n) and as a direct consequence of (2.5).

Lemma A.2. If  is as in Assumption 1 and ♦ < 4, then

(u−1
rn

)

(nβ/(K−α))
→ 1.
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The projection of a function on {cos(k·) : 0 ≤ k ≤ n} is denoted by Sn, that is, if g =∑∞
k=−∞ gk cos(k·) with gk = g−k , then

Sng =
n∑

k=−n

gk cos(k·).

We write Tn(g) for the n × n Toeplitz matrix corresponding to g, that is,

Tn(g) = (g|i−j |)i,j=1,...,n. (A.3)

In particular, Cov(X′) = Tn(f ), with f as in (2.9). Let DCT8 be the discrete cosine transform

DCT8 =
(

2√
2n + 1

cos

[(
i − 1

2

)(
j − 1

2

)
2π

2n + 1

])
i,j=1,...,n

=
(

2√
2n + 1

cos

[(
i − 1

2

)
uj

])
i,j=1,...,n

(which is DCT-VIII in the notation of [5]). Note that DCT8 = DCTt
8 is orthonormal. Further

introduce the matrix Dn(g) as

Dn(g) := DCT8 ·diag
(
g(u1), g(u2), . . . , g(un)

) · DCT8 . (A.4)

Asymptotically, the eigenvalues of Dn(g) and Tn(g) are ‘close’, provided the symbol g is suffi-
ciently smooth (cf. Lemma C.4).

If Cov(Y) = τ 2(�t�)K , consider the observation vector Z̃ = (Z̃1,n, . . . , Z̃n,n) which is ob-
tained by the invertible transformation Z̃i,n = Zn−i,n. These observations satisfy our assumptions
with Cov(Y) = τ 2(��t)K . Therefore, without loss of generality, we can and will consider only
the first case of Assumption 2, that is, Cov(Y) = τ 2(��t)K . By Lemma C.2, DCT8 diagonalizes
�t� and hence also Cov(Y) = τ 2(�t�)K . The eigenvalues of Cov(Y) are explicitly given by
4Kτ 2 sin2K(ui

π
2 ), i = 1, . . . , n.

For the subsequent proofs, the following three elementary inequalities turn out to be very
useful. Firstly, from (2.6) and Potter’s bound (cf., e.g., Bingham et al. [3]) it follows that for any
ε > 0 there exists a k0 such that for any k ≥ k0

1
4k−2α−1−ε ≤ 1

2k−2α−1(k) ≤ γk ≤ 2k−2α−1(k) ≤ 4k−2α−1+ε. (A.5)

Moreover, we can find a constant C1 such that γk ≤ C1k
−2α−1+ε for all k = 1,2, . . . . Secondly,

if f (λ) ∼ Cn−2βλ2α(1/λ), then, for every ε > 0 we can find a δ > 0, such that for all λ ∈ (0, δ],
1

4
Cλ2α+ε ≤ 1

2
Cλ2α

(
1

λ

)
≤ f (λ) ≤ 2Cλ2α

(
1

λ

)
≤ 4Cλ2α−ε. (A.6)

Additionally, under the assumptions of Theorem 2, we know that f is bounded on [δ,π] for
every δ > 0 (cf. Lemma C.6) and therefore the upper bound f (λ) ≤ 4Cλ2α−ε can be extended to
all λ ∈ (0,π] by enlarging the constant appropriately. Finally, for all λ ∈ (0,π], we have

σ 2n−2βf (λ) + 4−Kτ 2λ2K ≤ h(λ) ≤ σ 2n−2βf (λ) + τ 2λ2K. (A.7)
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A.3. Proof of Theorem 2

The proof of the main theorem builds in a very neat way upon an elementary analytical ob-
servation (cf. Lemma A.3) which leads in a second step to a trace approximation for positive
semidefinite matrices (cf. Lemma A.4). This approximation result does not require any assump-
tion on the behavior of the smallest or largest eigenvalue. Together with a rather standard but
slightly technical Riemann approximation argument, we can then deduce a generalized version
of Theorem 2.

Lemma A.3. Let (xn)n, (yn)n, (qn)n, (ωn)n be positive sequences such that |√xn − √
yn| =

O(qn) and ωn → ∞. Then, xn = yn(1 + o(1)) + O(q2
nωn).

Proof. Set an = max(xn, yn) and bn = min(xn, yn). We obtain (an/bn)
1/2 − 1 = O(qnb

−1/2
n )

implying an/bn = 1 + O(qnb
−1/2
n + q2

nb−1
n ) and an = bn + O(qnb

1/2
n + q2

n). Since 2qnb
1/2
n ≤

bn/ωn + q2
nωn and ωn → ∞, we find an = bn(1 + o(1)) + O(q2

nωn). �

Let A be an n × n matrix. For convenience, we introduce the notation

〈A〉 := tr
(
A2).

Lemma A.4. Let A1,A2,B be (sequences of) positive semidefinite, n × n matrices and suppose
that A1 is invertible. If (ωn)n is a positive sequence tending to infinity, then, for n → ∞,

〈A1B〉 = 〈A2B〉(1 + o(1)
)+ O

(〈
B(A1 − A2)

〉
ωn

)
.

Furthermore, if B ≤ A−1
1 , then

〈A1B〉 = 〈A2B〉(1 + o(1)
)+ O

(〈
idn −A

1/2
2 A−1

1 A
1/2
2

〉
ωn

)
.

Proof. By Cauchy–Schwarz,∣∣〈A1B〉 − 〈A2B〉∣∣ = ∣∣tr(B(A1 − A2)BA1
)+ tr

(
BA2B(A1 − A2)

)∣∣
≤ ∥∥B1/2(A1 − A2)B

1/2
∥∥

2

[
tr
(
(A1B)2)1/2 + tr

(
(A2B)2)1/2]

.

For the last inequality we have rewritten tr(B(A1 − A2)BA1) and tr(BA2B(A1 − A2)) as
tr(B1/2(A1 −A2)B

1/2 ·B1/2A1B
1/2) and tr(B1/2(A1 −A2)B

1/2 ·B1/2A2B
1/2). Since 〈B(A1 −

A2)〉 = ‖B1/2(A1 − A2)B
1/2‖2

2, the result follows with Lemma A.3.
To prove the second claim, write

B1/2(A1 − A2)B
1/2 = B1/2A

1/2
1

(
idn −A

−1/2
1 A2A

−1/2
1

)
A

1/2
1 B1/2
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and note that due to A
1/2
1 BA

1/2
1 ≤ idn,〈

B(A1 − A2)
〉≤ 〈

idn −A
−1/2
1 A2A

−1/2
1

〉= 〈
idn −A

1/2
2 A−1

1 A
1/2
2

〉
. �

In the case α > 0 the multiplicative inverse of the spectral density h has a singularity at zero.
In order to deal with this, we introduce the regularized spectral density h̃, which is defined as
follows: let (ρn) be a sequence of positive integers satisfying ρn � rn. Then, we define

h̃(λ) :=
{

h(λ) ∨ h(uρn), λ ≤ uρn ,
h(λ), else,

with uρn as in (A.2). Replacing h by f , define in the same way f̃ . We will prove a generalized
version of Theorem 2 for a generic sequence (ρn)n. In a second step, the different versions of the
main theorem are deduced and ρn will be chosen according to the specific setting. Heuristically,
we may interpret this spectral regularization as adding an asymptotically noninformative (i.e.,
sufficiently small) WN process to our observation vector. This induces some stability, which
becomes important in the bounds for the inverse covariance matrices.

Theorem 4. Work under Assumptions 1 and 2 in model (1.1). Suppose that α ∈ (−1/2,1/2) and
K − α > β ∨ 1/4. If:

(i) (γk)k≥0 is in GM, f is bounded on any interval [δ,π] with δ > 0 and there exists a
positive, quasi-monotone slowly varying function , such that

f (λ) ∼ 2 sign(−α)�(−2α) cos(πα)λ2α(1/λ),

(ii) n−4β−4α−2+2ε
∑n

i=1(ui,nh̃(ui,n))
−2 = o(rn), for some ε > 0,

(iii) 〈D−1
n (̃h)(Dn(Snf ) − Tn(f ))〉 + supλ∈(0,π] h̃−2(λ) = o(rnn

4β).

Then, the asymptotic Fisher information of σ 2 is

In
σ 2 = n1−4β

2π

∫ π

0

f 2(λ)

h2(λ)
dλ
(
1 + o(1)

)+ o(rn). (A.8)

If the condition K − α > β ∨ 1/4 is replaced by the weaker assumption K − α > β , imposing
additionally log(n)2(n) → ∞ in the critical case K −α = 1/4, then (A.8) holds, provided there
exists a constant cf such that∣∣f (λ) − f (μ)

∣∣≤ cf n−2βλ2α−2|λ − μ| for all 0 < λ ≤ μ ≤ π. (A.9)

Remark 1. Later on we will see that the different parts of Theorem 2 follow from Theorem 4.
If (X′

i )i has long-memory, condition (iii) turns out to be quite difficult to verify. Although it
would be easier (and more standard) to formulate the condition with respect to squared Frobe-
nius norms, let us shortly explain, why the use of the 〈·〉 notation is essential. By definition,
〈A〉 = tr(A2) for an n × n, square matrix A, which in turn can be upper bounded by the squared
Frobenius norm of A (cf. Lemma C.1(i)). This is even an identity if A is symmetric but can
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be very rough in general. To see this consider (A)i,j = 1/i. Then 〈A〉 = log2 n but the squared
Frobenius norm is of order n which is much worse. Since these phenomenons occur in some
cases, condition (iii) is stated for squared traces.

Proof of Theorem 4. Recall the explicit expression for the Fisher information in (2.1). The proof
is subdivided into three steps, namely

〈
Dn(f̃ )D−1

n (̃h)
〉 = n

π

∫ π

0

f 2(λ)

h2(λ)
dλ
(
1 + o(1)

)+ o
(
rnn

4β
)
,〈

Tn(f )D−1
n (̃h)

〉 = 〈
Dn(f̃ )D−1

n (̃h)
〉(

1 + o(1)
)+ o

(
rnn

4β
)
,

2In
σ 2 = 〈

n−2βTn(f )Cov(Z)−1〉 = 〈
n−2βTn(f )D−1

n (̃h)
〉(

1 + o(1)
)+ o(rn),

which are denoted by (I), (II) and (III), respectively.
(I): By the trivial bound

∫ π
0 f 2(λ)/h2(λ)dλ = O(n4β) = o(rnn

4β), we can replace the nor-
malization factor n/π by (2n + 1)/(2π). Thus, using (A.4), it is sufficient to show that∣∣∣∣∣

n∑
i=1

f̃ 2(ui)

h̃2(ui)
− 2n + 1

2π

∫ π

0

f 2(λ)

h2(λ)
dλ

∣∣∣∣∣= o
(
rnn

4β
)
. (A.10)

Now, let us treat the cases K − α > 1/4 ∨ β and β < K − α ≤ 1/4, separately.
If K − α > 1/4 ∨ β holds: Using assumption (i) and rn � n, we can find integer sequences

(r+
n ) and (r−

n ) such that ρn � r−
n � rn � r+

n � n and (qn + (r−
n )−1)r+

n = o(rn) with

qn := qn

(
r+
n

) := sup
0<λ≤u

r
+
n

1≤μ≤2

∣∣∣∣Cλ2α(1/λ)

f (λ)
− 1

∣∣∣∣+ ∣∣∣∣1 − (μ/λ)

(1/λ)

∣∣∣∣. (A.11)

Since σ 2n−2βf ≤ h and σ 2n−2βf̃ ≤ h̃, it follows that

r−
n∑

i=1

f̃ 2(ui)

h̃2(ui)
= o

(
rnn

4β
)

and n

∫ u
r
−
n

0

f 2(λ)

h2(λ)
dλ = o

(
rnn

4β
)

and together with Proposition C.1, we see that in (A.10) the sum over i = 1, . . . , r−
n and i =

r+
n , . . . , n as well as the integral over (0, ur−

n
] ∪ [ur+

n
,π] are of order o(rn) and thus negligible.

Thus, we have proved (I), once we have verified that

∣∣∣∣∣
r+
n∑

i=r−
n +1

f 2(ui)

h2(ui)
− 2n + 1

2π

∫ u
r
+
n

u
r
−
n

f 2(λ)

h2(λ)
dλ

∣∣∣∣∣= o
(
rnn

4β
)
. (A.12)
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To see this, write

∣∣∣∣∣
r+
n∑

i=r−
n +1

f 2(ui)

h2(ui)
− 2n + 1

2π

∫ u
r
+
n

u
r
−
n

f 2(λ)

h2(λ)
dλ

∣∣∣∣∣
≤

r+
n∑

i=r−
n +1

sup
ξi∈[ui−1,ui ]

∣∣∣∣f 2(ui)

h2(ui)
− f 2(ξi)

h2(ξi)

∣∣∣∣ (A.13)

≤ 2n4β

σ 2

r+
n∑

i=r−
n +1

sup
ξi∈[ui−1,ui ]

∣∣∣∣n−2βf (ui)

h(ui)
− n−2βf (ξi)

h(ξi)

∣∣∣∣.
Fix i ∈ {r−

n +1, . . . , r+
n } and let a1 = σ 2n−2βf (ui), a2 = σ 2n−2βf (ξi), b1 = 4Kτ 2 sin2K(ui/2),

b2 = 4Kτ 2 sin2K(ξi/2), c1 = h(ui), c2 = h(ξi). Since 0 ≤ a1 ≤ c1 = a1 + b1 and 0 ≤ a2 ≤ c2 =
a2 + b2, we find ∣∣∣∣a1

c1
− a2

c2

∣∣∣∣≤ |a1 − a2| + |b1 − b2|
c1 ∨ c2

. (A.14)

Thus, for sufficiently large n,

|a1 − a2| ≤ (a1 + a2)qn + σ 2Cn−2β

∣∣∣∣u2α
i 

(
1

ui

)
− ξ2α

i 

(
1

ξi

)∣∣∣∣
≤ (3a1 + a2)qn + σ 2Cn−2β

(
1

ξi

)∣∣u2α
i − ξ2α

i

∣∣
(A.15)

≤ (3a1 + a2)qn + π

n
σ 2Cn−2β

(
1

ξi

)
ξ2α−1
i

≤ (3a1 + a2)qn + 6
(
r−
n

)−1
a2.

On the other hand, we find |b1 − b2| ≤ 2Kπ
2n+1 4Kτ 2 sin2K−1(

ui

2 ) ≤ 8K(r−
n )−1b1, and therefore∣∣∣∣a1

c1
− a2

c2

∣∣∣∣≤ 4qn + (6 + 8K)
(
r−
n

)−1
.

Due to (qn + (r−
n )−1)r+

n = o(rn), we see by (A.13) that (A.12) is bounded by o(rnn
4β). This

completes the proof for part (I) if K − α > 1/4 ∨ β .
If β < K − α ≤ 1/4: The proof is very similar to the one for the first case. Note that the

assumptions imply rnn
4β � n, K = 0, and α ∈ [−1/4,−β). Similar as above we see that it

is sufficient to prove (A.12) for r+
n = n and any sequence r−

n = o(rn). We may assume that
r−
n → ∞. Since by (A.9), f and h are continuous, we can apply the mean value theorem, that is,
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for any i there is a ξi ∈ (ui−1, ui] with

f 2(ξi)

h2(ξi)
= 2n + 1

2π

∫ ui

ui−1

f 2(λ)

h2(λ)
dλ (A.16)

and ∣∣∣∣∣
n∑

i=r−
n +1

f 2(ui)

h2(ui)
− 2n + 1

2π

∫ un

u
r
−
n

f 2(λ)

h2(λ)
dλ

∣∣∣∣∣
(A.17)

≤
n∑

i=r−
n +1

(
f (ui)

h(ui)
+ f (ξi)

h(ξi)

)∣∣∣∣f (ui) − f (ξi)

h(ui) ∨ h(ξi)

∣∣∣∣.
Pick an integer sequence wn such that wn = o(n) and for some ε > 0, n−4α+εw4α−ε−1

n = o(1).
Let qn(wn) be as in (A.11) with r+

n replaced by wn. Note that since uwn → 0, the sequence
(qn(wn))n tends to zero. As in (A.15), we find for sufficiently large n and for all i = r−

n , . . . ,wn,∣∣f (ui) − f (ξi)
∣∣≤ (

3f (ui) + f (ξi)
)
qn(wn) + 2σ 2πCn−1ξ2α−1−ε

i . (A.18)

For large indices, we use the estimate (A.9), that is, |f (ui) − f (ξi)| ≤ cf πn−1ξ2α−2
i for

i = wn + 1, . . . , n. Split the sum in (A.17) into
∑wn

i=r−
n +1

+∑n
i=wn+1. It is easy to bound the

second sum, using the definition of (wn)n, which in turn implies that n−1∑n
i=wn+1 ξ4α−2−ε

i �
n1−4α+εw4α−1−ε

n = o(n). Similar, computing the sum
∑wn

i=r−
n +1

, over the second term in (A.18)

yields for small ε, n−1∑wn

i=r−
n +1

ξ4α−1−2ε
i � n−4α+2εw4α−2ε

n = o(n). For the first term in (A.18),

we see that (A.17) can be further bounded by a multiple of qn(wn)(
∑n

i=1 f 2(ui)/h2(ui)+ (2n+
1)(2π)−1

∫ π
0 f 2(λ)/h2(λ)dλ). Putting all estimates together, we have derived∣∣∣∣∣

n∑
i=r−

n +1

f 2(ui)

h2(ui)
− 2n + 1

2π

∫ un

u
r
−
n

f 2(λ)

h2(λ)
dλ

∣∣∣∣∣� 2n + 1

2π

∫ π

0

f 2(λ)

h2(λ)
dλ + o(n).

This finishes the proof of part (I).
To prove (II) and (III) it will not be necessary to distinguish whether K −α > 1/4 or K −α ≤

1/4.
(II): In Lemma A.4, set A1 = Tn(f ), A2 = Dn(f̃ ) and B = D−1

n (̃h). We have to show that〈
B(A1 − A2)

〉= 〈
D−1

n (̃h)
(
Tn(f ) − Dn(f̃ )

)〉= o
(
rnn

4β
)
. (A.19)

First, note that due to (A.4), σ 2n−2βf ≤ σ 2n−2βf̃ ≤ h̃, and ρn � rn,

〈
D−1

n (̃h)
(
Dn(f ) − Dn(f̃ )

)〉= ρn∑
j=1

(f (uj ) − f̃ (uj ))
2

(̃h(uj ))2
≤ 2

ρnn
4β

σ 4
= o

(
rnn

4β
)
.



Estimation of a scale parameter 767

By assumption (γk)k ∈ GM and α ∈ (−1/2,1/2). Therefore, we can use the estimate from
Lemma C.3(i) together with (A.5), that is, there exists a constant C1, such that

∣∣f (x) − Snf (x)
∣∣≤ C1

1

x

(
|γn| +

∞∑
k=n+1

|γk|
k

)
� 1

x
n−2α−1+2ε for all x ∈

[
1

n
,π

)
,

where the second inequality holds for sufficiently large n and ε small. With (A.4) and assumption
(ii) this yields 〈

D−1
n (̃h)

(
Dn(Snf ) − Dn(f )

)〉= o
(
rnn

4β
)
. (A.20)

Decompose Tn(f )−Dn(f̃ ) = (Tn(f )−Dn(Snf ))+ (Dn(Snf )−Dn(f ))+ (Dn(f )−Dn(f̃ )).
Now by Lemma C.1, (iv) and assumption (iii), (A.19) follows.

(III): Set A1 = Cov(Z)−1,A2 = D−1
n (̃h) and B = σ 2n−2β Cov(X) and apply Lemma A.4.

Since B ≤ Cov(Z) = A−1
1 it is sufficient to show〈

idn −A
1/2
2 A−1

1 A
1/2
2

〉= 〈
idn −D

−1/2
n (̃h)Cov(Z)D

−1/2
n (̃h)

〉= o(rn). (A.21)

By the perfect diagonalization property of Cov(Y) (cf. the remarks in Section A.2), we have
Cov(Y) = Dn(h − σ 2n−2βf ) and

Cov(Z) = σ 2n−2β
[
Cov(R) + Cov

(
X′,R

)+ Cov
(
R,X′)]

+ σ 2n−2β
(
Tn(f ) − Dn(f )

)+ Dn(h).

Together with Lemma C.1(iv),〈
idn −D

−1/2
n (̃h)Cov(Z)D

−1/2
n (̃h)

〉
�
〈
idn −Dn

(̃
h−1h

)〉
+ n−4β sup

λ∈(0,π]
h̃−2(λ)

∥∥Cov(R) + Cov
(
X′,R

)+ Cov
(
R,X′)∥∥2

2 (A.22)

+ n−4β
〈
D−1

n (̃h)
(
Dn(f ) − Dn(Snf )

)〉
+ n−4β

〈
D−1

n (̃h)
(
Dn(Snf ) − Tn(f )

)〉
.

For the first term note that because of (A.4) and 0 ≤ 1 − h/h̃ ≤ 1,

〈
idn −Dn

(̃
h−1h

)〉= ρn∑
i=1

(
1 − h(ui)

h̃(ui)

)2

= o(rn).

The other three terms on the r.h.s. of (A.22) can be seen to be of order o(rn) as well, by Assump-
tion 1, assumption (iii), (A.20), and assumption (iii) again. Therefore, (A.21) holds and the proof
is completed. �
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Proof of Theorem 2, part 1. We check the conditions of Theorem 4. Note that the special case,
that is, K − α ≤ 1/4 implies together with K − α > β that K = 0 and α ∈ [−1/4,−β). Hence,
this case only plays a role in parts 2 and 3 (in the latter only if K = 0 and α = −1/4). All the
derived estimates will work for both situations and thus, in the following, we do not distinguish
between these two cases explicitly.

Let ρn = n1−(4α)−1(1−β/(K−α))+δ � rn for some δ > 0. Such a δ always exists thanks to the
assumption K − α > (4α + 1)β . This assures that

(ρn/n)−4α−2ε = o(rn) for ε small enough. (A.23)

(i): By [24], (γk)k ∈ GM. The second part follows from Lemma C.6.
(ii): Making use of inequalities (A.6) and (A.7),

n−4β−4α−2+2ε

n∑
i=1

(
ui,nh̃(ui,n)

)−2

� n−4β−4α−2+2ε

[
ρn∑
i=1

(
n

i

(
n

ρn

)2α+ε

n2β

)2

+
rn∑

i=ρn+1

(
n

i

)4α+2ε+2

n4β +
n∑

i=rn+1

(
n

i

)4K+2
]

� n4ε(ρn)
−4α−2ε + n4(K−α−β)+2εr−4K−1

n = o(rn),

if ε is chosen small enough.
(iii): By Lemma C.1(iii) and (i), Lemma C.4, and Tn(f ) = Tn(Snf ),〈

D−1
n (̃h)

(
Dn(Snf ) − Tn(f )

)〉 ≤ ∥∥D−1
n (̃h)

∥∥2
∞
〈
Dn(Snf ) − Tn(f )

〉
≤ ∥∥D−1

n (̃h)
∥∥2

∞
∥∥Dn(Snf ) − Tn(f )

∥∥2
2

�
(

ρn

n

)−4α−2ε

n4β = o
(
rnn

4β
)
,

if δ and ε are chosen appropriately. By the same arguments supλ∈(0,π] h̃−2(λ) = o(rnn
4β) and

this completes the proof of the claim. �

Proof of Theorem 2, part 2. Let ρn = 1, that is, h̃(ui) = h(ui). The proof of this part is similar
to the one for (i). Again, we check the conditions of Theorem 4:

(i): This follows from Lemma C.6.
(ii): Splitting the sum

∑n
i=1 =∑rn

i=1 +∑n
i=rn+1, we find for small ε, by inequalities (A.6)

and (A.7),

n−4β−4α−2+2ε
n∑

i=1

(
ui,nh̃(ui,n)

)−2 � n4ε + n4(K−α−β)+2εr−4K−1
n = o(rn).
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(iii): Observe that by (A.6) and (A.7), h(λ) � n−2Kβ/(K−α−ε/2). Together with Lemma C.4,〈
D−1

n (̃h)
(
Dn(Snf ) − Tn(f )

)〉+ sup
λ∈(0,π]

h̃−2(λ) ≤ sup
λ∈(0,π]

h̃−2(λ)
(∥∥Dn(Snf ) − Tn(f )

∥∥2
2 + 1

)
� n4Kβ/(K−α−ε/2)−4α+2ε = o

(
rnn

4β
)
. �

Proof of Theorem 2, part 3. We apply Theorem 4 with f̃ (ui) = f (ui) and h̃(ui) = h(ui), that
is, ρn = 1.

(i): This follows from Lemmas C.5 and C.6.
For the following parts we make frequently use of the inequalities (A.5)–(A.7) and the subse-

quent comments.
(ii): Since urn → 0, we find, if n is sufficiently large,

n∑
i=1

1

u2
i h(ui)2

�
rn∑

i=1

n4β

u2
i f (ui)2

+
n∑

i=rn+1

1

u2+4K
i

� n2+4β+4α+2εr−1−4α
n + n2+4Kr−1−4K

n .

Therefore,

n−4β−4α−2+2ε

n∑
i=1

1

u2
i h(ui)2

� n4εr−1−4α
n + n−4β−4α+4K+2εr−1−4K

n = o(rn)

for ε sufficiently small.
(iii): It is straightforward to bound supλ∈(0,π] h̃−2(λ) by a multiple of n4Kβ/(K−α−ε/2) =

o(rnn
4β), which immediately implies that the second term has the right order. However, to show

the same rate for the first term turns out to be the most difficult part of the proof. Let us shortly
remark on that. The crucial point is that although we have good control on the spectral density h,
this gives no direct link to entries of the inverse of Dn(h). In contrast to the proofs above, esti-
mating 〈D−1

n (h)(Dn(Snf ) − Tn(f ))〉 by (supλ 1/h(λ))2‖Dn(Snf ) − Tn(f )‖2
2 is too rough (cf.

also Remark 1). Therefore, we look for a new function, say g, with the properties that 1/(gh)

behaves like a constant for small λ and Dn(Sng) is explicitly known. It turns out that g = f1/2+α

is a good choice, where f1/2+α denotes the spectral density of a fractional Gaussian noise pro-
cess with Hurst index 1/2 + α ≤ 1/4, cf. Lemma C.7 for details. Furthermore, r1/2+α denotes
the corresponding autocovariance function. From (A.6) and (A.7), we obtain

sup
λ∈[1/n,π)

1

f1/2+α(λ)h(λ)
� n2β+ε. (A.24)

Define

I := 〈
D−1

n

(
hf1/2+α

)(
Dn(f1/2+α) − Dn(Snf1/2+α)

)(
Dn(Snf ) − Tn(f )

)〉
,

II := 〈(
Dn(Snf1/2+α) − Tn(f1/2+α)

)(
Dn(Snf ) − Tn(f )

)〉
,

III := 〈
Tn(f1/2+α)

(
Dn(Snf ) − Tn(f )

)〉
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and note that by Lemma C.1(iii),

1
4

〈
D−1

n (h)
(
Dn(Snf ) − Tn(f )

)〉 ≤ I + ∥∥D−1
n (hf1/2+α)

∥∥2
∞(II + III)

(A.25)
� I + n4β+2ε(II + III).

In the following we will bound the terms I, II and III, separately.
(I): By (ii) and (iv) of Lemma C.7, we know (r1/2+α(k))k ∈ GM and that f1/2+α behaves

like a multiple of λ−2α for λ ↓ 0. Using Lemma C.3(i) and (A.24),

sup
λ∈[1/n,π)

|f1/2+α(λ) − Snf1/2+α(λ)|
h(λ)f1/2+α(λ)

� n2β+1+ε

(∣∣r1/2+α(n)
∣∣+ ∞∑

k=n+1

|r1/2+α(k)|
k

)

� n2β+2α+ε.

Thus, with (A.4) and Lemma C.1(iii),

I ≤ ∥∥D−1
n (hf1/2+α)

(
Dn(f1/2+α) − Dn(Snf1/2+α)

)∥∥2
∞
〈
Dn(Snf ) − Tn(f )

〉
� n4ε+4β.

(II): By Lemma C.7(i), and the boundedness of the sequence (r1/2+α(k))k , we see that there
exists a constant Cα such that for all k ∈ N, |r1/2+α(k)| ≤ Cαk2α−1. Using Lemma C.2 and (A.5),

ei,j := ∣∣[(Dn(Snf1/2+α) − Tn(Snf1/2+α)
)(

Dn(Snf ) − Tn(f )
)]

i,j

∣∣
≤ CαCr

n∑
k=1

(|i + k|2α−1 + |2n + 2 − k − i|2α−1)
× (|j + k|−2α−1+δ′ + |2n + 2 − j − k|−2α−1+δ′)

.

Define F(i, j) := ∑n
k=1 |i + k|2α−1|j + k|−2α−1. It is well known that if (ak)k and (bk)k

are nonnegative sequences which are monotone increasing and decreasing, respectively, then∑n
k=1 akbk ≤∑n

k=1 akbn+1−k . Thus,

ei,j ≤ CαCr(2n)δ
′(
F(i, j) + F(i, n + 1 − j) + F(n + 1 − i, j) + F(n + 1 − i, n + 1 − j)

)
.

From the monotonicity of x �→ x−2α−1 and x �→ x2α−1 for x > 0,

F(i, j) ≤ j−2α−1
n∑

k=1

|i + k|2α−1 ≤ j−2α−1
∫ ∞

i

x2α−1 dx = 1

2|α|j
−2α−1i2α.

This allows to bound ei,j ej,i by a multiple of n2ε(min(i, n+ 1 − i)min(j, n+ 1 − j))−1. Hence,
II ≤∑n

i,j=1 ei,j ej,i � n2ε log2 n.
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(III): First let us introduce the projection � = �n defined for an n × n matrix A =
(ai,j )i,j=1,...,n by (�A)i,j := ai,j if i + j ≤ n + 1 and zero otherwise. Further let E denote
the n × n matrix (E)i,j := 1 if i + j = n + 1 and zero otherwise. In particular E2 = idn. Note
that by Lemma C.1(iv),〈

Tn(f1/2+α)
(
Dn(Snf ) − Tn(f )

)〉
≤ 2

〈
Tn(f1/2+α)�

(
Dn(Snf ) − Tn(f )

)〉+ 2
〈
Tn(f1/2+α)(idn −�)

(
Dn(Snf ) − Tn(f )

)〉
,

where by a slight abuse of language idn denotes here the identity operator on the space of n × n

matrices. To bound the first term, we decompose

(
Tn(f1/2+α)�

(
Dn(Snf ) − Tn(f )

))
i,j

=
2i−1∑
k=1

r1/2+α(i − k)[γk+j−1 − γi+j−1]

+ γi+j−1

2i−1∑
k=1

r1/2+α(i − k)

+
n+1−j∑
k=2i

r1/2+α(i − k)γk+j−1

=: A1(i, j) + A2(i, j) + A3(i, j)

with the convention
∑n+1−j

k=2i = −∑2i
k=n+1−j if 2i > n + 1 − j . By assumption |γq+p − γp| ≤∑q+p−1

v=p |γv+1 − γv| � nεqp−2α−1. Hence, uniformly in i, j ,

∣∣A1(i, j)
∣∣� nε

2i−1∑
k=1

min
(|i − k|2α,1

)
j−2α−2 � nεi2α+1j−2α−2. (A.26)

If 2j < i, we can split the sum
∑2i−1

k=1 =∑�i/2�
k=1 +∑2i−1

k=�i/2�+1. Then, the first part of |A1(i, j)|
can be bounded also by∣∣∣∣∣

�i/2�∑
k=1

r1/2+α(i − k)[γk+j−1 − γi+j−1]
∣∣∣∣∣� nεi2α−1

�i/2�∑
k=1

(k + j − 1)−2α−1 � nεi−1

and the second part is by the same arguments as in (A.26) (j can now be replaced by i + j ) of
the order nεi2α+1(i + j − 1)−2α−2 ≤ nεi−1. Together, this shows that∣∣A1(i, j)

∣∣� {
nεi2α+1j−2α−2, if 2j ≥ i,
nεi−1, if 2j < i.

With Lemma C.7(i) and telescoping,
∑2i−1

k=1 r1/2+α(i − k) = i2α+1 − (i − 1)2α+1 and therefore,∣∣A2(i, j)
∣∣� nε(i + j − 1)−2α−1i2α.
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The last term of the expansion can be simply bounded by

∣∣A3(i, j)
∣∣� nε(i + j − 1)−2α−1

n∑
k=2i

|i − k|2α−1 � nε(i + j − 1)−2α−1i2α.

In particular, the bounds for A2(i, j) and A3(i, j) are uniformly in i, j as well. Hence, by ele-
mentary computations∣∣〈Tn(f1/2+α)

(
Dn(Snf ) − Tn(f )

)〉∣∣
≤
∑
i,j

∣∣A1(i, j) + A2(i, j) + A3(i, j)
∣∣∣∣A1(j, i) + A2(j, i) + A3(j, i)

∣∣� n2ε log2 n.

Finally, note that ETn(f1/2+α)E = Tn(f1/2+α) and E((idn −�)[Dn(Snf ) − Tn(f )])E is a ma-
trix with entries −γi+j for i + j ≤ n and zero otherwise. Therefore, we have by rewriting〈

Tn(f1/2+α)(idn −�)
(
Dn(Snf ) − Tn(f )

)〉= 〈
Tn(f1/2+α)E

[
(idn −�)

(
Dn(Snf ) − Tn(f )

)]
E
〉

the same structure as above (up to an index shift by one) and all arguments apply. This shows
that III � n2ε log2 n.

The estimates in (I), (II), and (III) show that the r.h.s. of (A.25) can be upper bounded by
n4ε+4β log2 n, and hence assumption (iii) of Theorem 4 follows by choosing ε sufficiently small.

Since we have verified the assumptions of Theorem 4, part 3 of Theorem 2 follows. �
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[4] Bojanić, R. and Seneta, E. (1971). Slowly varying functions and asymptotic relations. J. Math. Anal.
Appl. 34 302–315. MR0274676

[5] Britanak, V., Yip, P.C. and Rao, K.R. (2007). Discrete Cosine and Sine Transforms: General Proper-
ties, Fast Algorithms and Integer Approximations. Amsterdam: Elsevier. MR2293207

[6] Cai, T.T., Munk, A. and Schmidt-Hieber, J. (2010). Sharp minimax estimation of the variance of
Brownian motion corrupted with Gaussian noise. Statist. Sinica 20 1011–1024. MR2729850

[7] Dahlhaus, R. (1989). Efficient parameter estimation for self-similar processes. Ann. Statist. 17 1749–
1766. MR1026311

[8] Davies, R.B. (1973). Asymptotic inference in stationary Gaussian time-series. Adv. in Appl. Probab.
5 469–497. MR0341699

[9] Dzhaparidze, K. (1986). Parameter Estimation and Hypothesis Testing in Spectral Analysis of Sta-
tionary Time Series. Springer Series in Statistics. New York: Springer. MR0812272

[10] Fox, R. and Taqqu, M.S. (1986). Large-sample properties of parameter estimates for strongly depen-
dent stationary Gaussian time series. Ann. Statist. 14 517–532. MR0840512

[11] Giraitis, L. and Surgailis, D. (1990). A central limit theorem for quadratic forms in strongly dependent
linear variables and its application to asymptotical normality of Whittle’s estimate. Probab. Theory
Related Fields 86 87–104. MR1061950

[12] Gloter, A. and Hoffmann, M. (2004). Stochastic volatility and fractional Brownian motion. Stochastic
Process. Appl. 113 143–172. MR2078541

[13] Gloter, A. and Hoffmann, M. (2007). Estimation of the Hurst parameter from discrete noisy data. Ann.
Statist. 35 1947–1974. MR2363959

[14] Gloter, A. and Jacod, J. (2001). Diffusions with measurement errors. I. Local asymptotic normality.
ESAIM Probab. Stat. 5 225–242 (electronic). MR1875672

[15] Gloter, A. and Jacod, J. (2001). Diffusions with measurement errors. II. Optimal estimators. ESAIM
Probab. Stat. 5 243–260 (electronic). MR1875673

[16] Jacod, J., Li, Y., Mykland, P.A., Podolskij, M. and Vetter, M. (2009). Microstructure noise in the
continuous case: The pre-averaging approach. Stochastic Process. Appl. 119 2249–2276. MR2531091

[17] Johnstone, I.M. (1999). Wavelet shrinkage for correlated data and inverse problems: Adaptivity re-
sults. Statist. Sinica 9 51–83. MR1678881

[18] Podolskij, M. and Vetter, M. (2009). Estimation of volatility functionals in the simultaneous presence
of microstructure noise and jumps. Bernoulli 15 634–658. MR2555193

[19] Porat, B. and Friedlander, B. (1986). Computation of the exact information matrix of Gaussian time
series with stationary random components. IEEE Trans. Acoust. Speech Signal Process. 34 118–130.
MR0832320

[20] Reiß, M. (2011). Asymptotic equivalence for inference on the volatility from noisy observations. Ann.
Statist. 39 772–802. MR2816338

[21] Rohde, A. and Dümbgen, L. (2013). Statistical inference for the optimal approximating model.
Probab. Theory Related Fields 155 839–865. MR3034794

[22] Sabel, T. and Schmidt-Hieber, J. (2014). Supplement to “Asymptotically efficient estimation of a
scale parameter in Gaussian time series and closed-form expressions for the Fisher information.”
DOI:10.3150/12-BEJ505SUPP.

[23] Stein, M.L. (1987). Minimum norm quadratic estimation of spatial variograms. J. Amer. Statist. Assoc.
82 765–772. MR0909981

http://www.ams.org/mathscinet-getitem?mr=1933102
http://www.ams.org/mathscinet-getitem?mr=0898871
http://www.ams.org/mathscinet-getitem?mr=0274676
http://www.ams.org/mathscinet-getitem?mr=2293207
http://www.ams.org/mathscinet-getitem?mr=2729850
http://www.ams.org/mathscinet-getitem?mr=1026311
http://www.ams.org/mathscinet-getitem?mr=0341699
http://www.ams.org/mathscinet-getitem?mr=0812272
http://www.ams.org/mathscinet-getitem?mr=0840512
http://www.ams.org/mathscinet-getitem?mr=1061950
http://www.ams.org/mathscinet-getitem?mr=2078541
http://www.ams.org/mathscinet-getitem?mr=2363959
http://www.ams.org/mathscinet-getitem?mr=1875672
http://www.ams.org/mathscinet-getitem?mr=1875673
http://www.ams.org/mathscinet-getitem?mr=2531091
http://www.ams.org/mathscinet-getitem?mr=1678881
http://www.ams.org/mathscinet-getitem?mr=2555193
http://www.ams.org/mathscinet-getitem?mr=0832320
http://www.ams.org/mathscinet-getitem?mr=2816338
http://www.ams.org/mathscinet-getitem?mr=3034794
http://dx.doi.org/10.3150/12-BEJ505SUPP
http://www.ams.org/mathscinet-getitem?mr=0909981


774 T. Sabel and J. Schmidt-Hieber

[24] Tikhonov, S. (2007). Trigonometric series with general monotone coefficients. J. Math. Anal. Appl.
326 721–735. MR2277815

[25] Zhang, L. (2006). Efficient estimation of stochastic volatility using noisy observations: A multi-scale
approach. Bernoulli 12 1019–1043. MR2274854

Received August 2012 and revised November 2012

http://www.ams.org/mathscinet-getitem?mr=2277815
http://www.ams.org/mathscinet-getitem?mr=2274854

	Introduction
	Main results
	An asymptotically Cramer-Rao efficient estimator
	Closed-form expressions for the Fisher information

	Examples
	Appendix: Proofs
	Proof of Theorem 1
	Notation and remarks for the results in Section 2.2
	Proof of Theorem 2

	Acknowledgments
	Supplementary Material
	References

