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P R E P A R A T I O N  AND C H A R A C T E R I Z A T I O N  OF MONOLAYERS AND 
M U L T I L A Y E R S  OF P R E F O R M E D  POLYMERS* 

G. DUDA, A. J. SCHOUTENt, T. ARNDT, G. LIESER, G. F. SCHMIDT~, C. BUBECK AND 

G. WEGNER 

Max-Planck-lnstitut fiir Polymerforsehung, Postfach 3148, 6500 Mainz (F.R.G.) 

(Received July 27, 1987; accepted October 3, 1987) 

In an attempt to study which factors determine the transferability of 
monolayers of preformed polymers from the air-water interface onto substrates we 
investigated flexible polymers (poly(octadecylmethacrylates) (PODMAs)) and 0t- 
helical polymers (polyglutamates). Pressure-area isotherms show the formation of a 
liquid-analogous state which depends on temperature and side chain "impurity". Y- 
mode Langmuir-Blodgett  multilayers of these polymers can be formed with a 
constant transfer ratio under conditions at which a more or less liquid-analogous 
state exists. Polarized IR spectra suggest that the polyglutamate a helices in the 
multilayer are oriented with the main axis parallel to the transfer direction and that 
carbon Side chains are practically randomly oriented around the a-helical cylinder. 
In P O D M A  multilayers the side chains are perpendicular to the film. In both cases 
the sidechains seem to interdigitate. 

1. INTRODUCTION 

The preparation of multilayered ultrathin films by the Langmuir-Blodgett  
(LB) technique has been investigated by several researchers in the last decade 
because of the possible applications of these films in for example microelectronics~. 
In most cases, however, the starting material was a low molecular weight 
amphiphilic molecule, whereas the preparation of multilayers starting with 
preformed polymer is rather unexplored 2-5. It appeared, however, that the transfer 
of monolayers of preformed polymers onto solid and planar substrates by the usual 
LB technique is not fully understood and is in some cases only possible when special 
techniques and precautions are introduced 5. 

* Paper presented at the Third International Conference on Langmuir-Blodgett Films, G6ttingen, 
F.R.G., July 26-31, 1987. 
t Present address: Laboratory of Polymer Chemistry, State University of Groningen, Nyenbourgh 
16 9747, A.G. Groningen, The Netherlands. 
:~ Present address: Department of Physical Chemistry, Johannes Gutenberg University, Jakob-Welder- 
Weg 15, 6500 Mainz, F.R.G. 
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In this paper we try to elucidate some of the parameters which are important for 
a successful transfer and, further, present some structural information on the 
multilayers formed. 

2. EXPERIMENTAL DETAILS 

Octadecylmethacrylate was from Merck and 95% pure. It was purified by 
distillation or by crystallization from acetone at 0 °C. Other solvents were of p.a. 
quality. Chloroform was of Uvasol quality. Atactic poly(octadecylmethacrylate) (a- 
PODMA) and copolymers with dodecylmethacrylate (a -PODMA-co-DMA) were 
obtained by polymerization in dilute solution in toluene at 80 °C under nitrogen, 
using Azobisisobutyronitrile as initiator. Isotactic poly(octadecylmethacrylate) (i- 
PODMA) was obtained according to the method of Goode et  al. 6 The polymers 
were purified by repeated precipitation from filtered toluene solution into methanol 
and dried under vacuum at room temperature. The tacticity was characterized by 
1H nuclear magnetic resonance (NMR), 13C NM R and IR spectroscopy. Molecular 
weights were determined by gel permeation chromatography (GPC) using the K and 
a values of Fee e t  al. 7 

The methacrylate polymers shown in Table I were synthesized. Poly(y-methyl- 
L-glutamate) was prepared by the N-carboxyanhidride method s'9. Poly(~,-methyl-L- 
glutamate-co-y-n-alkyl-L-glutamate) polymers were synthesized according to the 
method of Watanabe e t  al.  ~° using different n-alkyl alcohols. The degree of substi- 
tution was determined by elemental analysis. Molecular weights were determined 
with GP C  in tetrahydrofuran using polystyrene standards. Table II shows the poly- 
(v-methyl-L-glutamate-co-n-alkyl-L-glutamate) polymers that were synthesized. 
The polymers were dissolved in chloroform at concentrations of about 0.1 wt.%. 

Pressure-area isotherms were measured on a Lauda film balance at different 
temperatures with a compression speed of 42.16 cm z min -~. Small angle X-ray 

T A B L E  I 
METHACRYLATE POLYMERS SYNTHESIZED 

AT/,, x 10-  3 AT/w x 10-  3 Substitution o f D M A  (%~ 

a - P O D M A  7.2 12 
a - P O D M A  c o - D M A  8 12 13 
i - P O D M A - 1  8 12 
i - P O D M A - 2  7 51 

T A B L E  II  
POLY(7-METHYL- L-GLUTAMATE CO-n-ALKYL- L-GLUTAMATE) POLYMERS SYNTHESIZED 

n-alkyl group Polymer Degree of ~/n × 10-  3 
abbreviation substitution (mol.%) 

n-dodecyl  P M - c o - D d L G  32 ,.~ 12 
n-octadecyl  P M  c o - O L G  35 ~ 12 
n-eicosyl P M  c o - E L G  25 ~ 12 
n-docosyl  P M - c o - D c L G  25 ~ 12 



MONOLAYERS AND MULTILAYERS OF PREFORMED POLYMERS 223 

scattering (SAXS) patterns and Fourier transform (FT) IR transmission spectra were 
obtained from multilayers on silicon wafers. Grazing incidence reflection FTIR 
spectra of the multilayers were obtained from multilayers on gold substrates. 

Electron diffraction patterns were obtained using a Philips EM 300 micro- 
scope. The pattern was recorded from a sample consisting of 13 monolayers of i- 
PODMA-I .  The multilayer was deposited onto hydrophobic glass and was 
afterwards transferred onto electron microscope grids after floating off the film from 
the glass with dilute HF. 

3. RESULTS AND DISCUSSION 

3.1. Poly ( octadecylmethacrylate ) 
Figures 1-4 show the pressure re-area A isotherms of different PODMAs at 

different temperatures. 
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Fig. 1. n-A isotherms ofa-PODMA at differ~t temperatures. 
Fig. 2. n-A isotherms ofi-PODMA-1 at different temperatures. 

From a comparison of the isotherms o f i -PODMA and a -PODMA (Figs. 1 and 
2) it follows that apparently the atactic polymer forms a more stable monolayer at 
the water surface. (The isotherm of a -PODMA below 20 °C is completely analogous 
to that published previously 4'11.) An increase in the temperature of the subphase has 
two effects on all the isotherms shown: (i) from a certain temperature the collapse 
pressure decreases; (ii) a "liquid-analogous" state is formed. 

However, the temperatures at which these phenomena occur differ. So, a- 
P O D M A  and i-PODMA-2 only show a liquid state at T > 3 2 ° C ,  whereas i- 
PODMA- 1 and a - P O D M A - c o - D M A  are liquid at T > 20 °C. More or less parallel 
to the appearance of a liquid state is the decrease in the collapse pressures. For  all 
polymers it can be seen that the area at which the liquid state occurs becomes larger 
with increasing temperatures. Comparing the results for the atactic and isotactic 
polymers, one can deduce that in this case the tacticity of the backbone chain does 
not play a dominant role and the origin of these effects has to be found in side-chain 
impurities. This is very clearly seen in Fig. 4, where "impurities" were deliberately 
introduced by copolymerization of an octadecylmethacrylate with a methacrylate 
monomer with a shorter alkyl chain. 
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The difference between the two isotactic samples originates from the different 
purification steps used for the monomer before polymerization: i -PODMA-1 was 
polymerized from a monomer, which was obtained by partially melting a stock 
bottle, followed by a distillation procedure, whereas i -PODMA-2 was obtained 
from a monomer, purified by melting the whole content of the stock bottle, followed 
by crystallization from acetone according to Fee et  al.7 

32oC 24°C 
"~ 60 ~ 8°c 

= I 60 
° ~ ~o- 

i , o  
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~Surfoce Area (;~2/monomer unit) 

Fig. 3. lt-A isotherms o f i -PODMA-2  at different temperatures. 

Fig. 4. n -A  isotherms of a - P O D M A - c o - D M A  at different temperatures. 
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Fig. 5. Electron diffraction pattern of a multilayer (13 layers of i -PODMA-1)  with the beam 
perpendicular to the film. 
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3.2. Multilayers 
Formation of multilayers by the LB technique could be achieved only under 

conditions at which the polymer or copolymer existed to some extent in the liquid 
state. So, for i-PODMA-1 at T = 28 °C and n ~ 10 mN m-1  transfer ratios onto 
quartz substrates were constant at least up to 50 layers. However, under the same 
conditions it was not possible to transfer the monolayer of i-PODMA-2: only at 
high pressures (about 30 mN m -  1 ) and T > 32 °C did some transfer take place. 

Electron diffraction (Figs. 5 and 6) with the beam normal to the layers results in 
a set of Bragg reflections, the intensities of which are isotropically distributed 
around the side chain axes. The rings can be indexed as h,k,O values of a metrically 
hexagonal lattice of the side chains. In other words, the alkyl chains are packed in a 
hexagonal fashion with the stems extending normal to the layer plane with some 
orientational disorder. Tilting of the specimen by approximately 60 ° results in a 
diffraction pattern which exhibits a meridional reflection corresponding to the 
repeating distance of a zigzag polyethylene chain (2.5 ~). 

SAXS experiments give a value of 30/~ for the layer spacing with several orders 
of SAXS peaks being visible. The same spacing is also derived from a set of 
meridional reflections visible in the electron diffraction pattern of the tilted 
specimen. Together with the observation that transfer of the monolayers of i- 

Fig. 6. Electron diffraction pattern of a multilayer (13 layers of i -PODMA-1)  with the beam at an angle of 
about  60 ° to the film. 
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P O D M A  was of the Y mode, this leads to the conclusion that the side chains have to 
interdigitate, forming a new type of layered structure where part  of the side-chain 
ordering was presumably obtained by compression on the water surface and part  
was due to subsequent crystallization on transfer. 

3.3. Polyglutamates  

Figure 7 shows pressure-area isotherms of P M - c o - O L G  monolayers at 
different temperatures. For  30 °C we observe a plateau region at ca. 30 m N  m - 1  
similar to the plateaux reported by other researchers 12-i 5. At lower temperatures the 
length of the plateau decreases, whereas a second linear rise in the surface pressure 
on further compression is observed. Extrapolating the first linear rise in pressure to 
zero pressure, we obtain the same value of the occupied area (24 ~, g roup-  ~) per 
repeat unit of the copolymer at different temperatures. 

Differences in monolayer  behaviour from copolymers with different side chain 
lengths at 20 °C are shown in Fig. 8. The area per repeat unit increases with 
increasing side-chain length: P M - c o - D d L G ,  23.0/~; P M - c o - O L G ,  24 ,~; P M - c o -  
ELG, 24.9/~; P M - c o - D c L G ,  25.7/~. For  longer side chains the second rise is shifted 
to higher pressures and lower areas. P M - c o - D d L G  shows only the plateau and no 
second rise was found. It is evident from these observations that within the measured 
temperature interval copolymers containing longer side chains were able to form a 
condensed phase, whereas the copolymers with the shorter side chains cannot. 
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Fig. 7. ~r-A isotherms of PM-co-OLG on water surface as a function of temperature. 
Fig. 8. n A isotherms of copolyglutamate monolayers with different side-chain lengths at 20 °C: C~2, 
PM-co-DdLG; C 18, PM-co-OLG; Cz0, PM-co-ELG; Cz2, PM-co-DcLG. 

3.4. Mul t i layers  
All the described copolyglutamates could be transferred onto hydrophobic 

substrates at 20-25 m N  m - 1 as Y-type LB multilayers. A constant transfer up to ca. 
200 layers was possible with this kind of material as can be seen from Fig. 9, where 
the IR absorption in the N H  stretch region is plotted as a function of the number of 
LB layers of P M - c o - O L G .  

Figures 10(a) and 10(b) show measurements of polarized transmission IR 
spectra of built-up LB films of P M - c o - O L G  with the electric vectors parallel and 
perpendicular respectively to the transfer direction. Figures 10(c) and 10(d) represent 
transmission IR spectra of LB layers and of a film cast from a chloroform solution of 
P M - c o - O L G  respectively. Figure 10(e) is a grazing incidence reflection IR spectrum 
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Fig. 9. NH stretching band absorption A as a function of the number of transferred LB multilayers of 
PM-co-OLG. 
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Fig. 10. Transmission IR spectra of LB layers of PM-co-OLG:  (a) with polarized light parallel to the 
dipping direction; (b) with polarized light perpendicular to the dipping direction; (c) without a 
polarization filter; (d) transmission IR spectrum of a cast film; (e) grazing incidence reflection IR spectrum 
from LB layers on gold. 
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of a built-up LB film of PM-co-OLG.  These spectra, which exhibit the typical N H  
stretching band at 3290 cm-1,  amide I band at 1653 cm-1 and amide II band at 
1550 cm-  1, reveal that the main conformation of the molecules in the LB layer as 
well as in the cast film from CHCI 3 is c~ helical. Analysis of these three absorptions 
(Figs. 10(a)-10(c)), normalized to the carbonyl band of the ester group in the side 
chain at 1737 cm-1,  which is randomly distributed, shows that the polypeptide 
helices are oriented with the main axis parallel to the transfer direction (Table Ill). 

TABLE III 
IR ABSORPTION DATA FOR POLY(~'-METHYL-L-GLUTAMATE-CO-n-OCTADECYL-L-GLUTAMATE) 

Sample ANH/Aest¢ r Acrt/Aeste r Aamidel/Aeste r A,miden/A¢~te ~ 

LB film (polarized 3.93 2.63 3.04 0.48 
transmission, E II ) 

LB film (polarized 1.05 2.48 0.91 0.93 
transmission, E l)  

LB film (transmission 2.25 2.65 1.79 0.72 
without a polarization filter) 

Cast film 2.43 2.82 1.98 0.72 

LB film 0.25 2.04 0.49 0.97 
(grazing incidence reflection) 

Polarized IR spectra analysis also shows that carbon side chains are practically 
randomly oriented around the s-helical cylinder. SAXS data of the different 
copolymers are listed in Table IV. The long spacing depends on the carbon side- 
chain length. Calculations of the diameter of the cz helix including the ester groups 
gave a value of 14/~ (ref. 16). Adding the calculated length of the extended carbon 
chain, we obtained maximum diameters for the whole cylinder including the side 
chain. These values, listed in Table IV, are much higher than the long spacings as 
measured by SAXS. However, assuming complete interdigitation of the side chains, 
we obtain the same values. Only PM-co-DdLG shows some discrepancy. Figure 11 
shows a proposed model for these long chain polyglutamates in LB multilayers. 

TABLE IV 
SAXS DATA FOR LANGMUIR--BLODGETT MULTILAYERS OF THE DIFFERENT POLYGLUTAMATES 

Copolymer Measured  Calculated maximum Calculated 
spacing (1~ ) spacing ( ~ ) spacing with 

interdigitation (lg,) 

PM-co-DdLG 32.7 41.50 27.75 
PM-co-OLG 35.0 56.50 35.25 
PM-co-ELG 37.0 61.50 37.75 
PM-co-DcLG 41.0 66.50 40.25 
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I 35 A 

(b) (a) 

Fig. 11. Proposed model for a-helical copolygiutamates with long side chains in LB multilayers: (a) side 
view and (b) top view. 

4. CONCLUSIONS 

The appearance of a liquid-analoguous state in the pressure-area isotherms of 
poly(octadecylmethacrylates) at higher temperatures can be induced by the 
copolymerization of shorter alkyl-chain-containing methacrylates. Furthermore, it 
appeared that transfer of monolayers from the water surface onto substrates was 
especially successful at those conditions when this liquid state exists. 

The multilayers formed exhibited a layer spacing of 30 ~ and electron 
diffraction patterns showed the side chains to be perpendicular to the layers, 
indicating interpenetration of side chains of successive monolayers. Non-complete 
substitution of the y-methyl-ester groups by long-chain alkyl groups in poly(y- 
methyl-L-glutamates) also resulted in transferable monolayers. The multilayers of 
this polymer also showed interdigitation of the side chains, so that the layer spacings 
agreed very well with the calculated dimensions of an 0t helix with stretched side 
chains. Moreover, these 0t helices were oriented with the helix axis in the flow 
direction on the substrate. 
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