516 research outputs found

    Toddlers recognize words in an unfamiliar accent after brief exposure

    No full text
    Both subjective impressions and previous research with monolingual listeners suggest that a foreign accent interferes with word recognition in infants, young children, and adults. However, because being exposed to multiple accents is likely to be an everyday occurrence in many societies, it is unexpected that such non-standard pronunciations would significantly impede language processing once the listener has experience with the relevant accent. Indeed, we report that 24-month-olds successfully accommodate an unfamiliar accent in rapid word learning after less than 2 minutes of accent exposure. These results underline the robustness of our speech perception mechanisms, which allow listeners to adapt even in the absence of extensive lexical knowledge and clear known-word referents

    Conclusions: A Way Forward

    Get PDF
    Despite a general improvement expected for the next decade in EU, some urban areas and some regions will still struggle with severe air quality problems and related health effects. These areas are often characterized by specific environmental and anthropogenic factors and will require ad hoc additional local actions to complement medium and long-term national and EU-wide strategies to reach EU air quality objectives. These urban areas are also among the territories where most energy is consumed and most greenhouse gases (GHGs) are emitted

    Developmental changes in infants’ ability to cope with dialect variation in word recognition

    No full text
    Toward the end of their first year of life, infants’ overly specified word representations are thought to give way to more abstract ones, which helps them to better cope with variation not relevant to word identity (e.g., voice and affect). This developmental change may help infants process the ambient language more efficiently, thus enabling rapid gains in vocabulary growth. One particular kind of variability that infants must accommodate is that of dialectal accent, because most children will encounter speakers from different regions and backgrounds. In this study, we explored developmental changes in infants’ ability to recognize words in continuous speech by familiarizing them with words spoken by a speaker of their own region (North Midland-American English) or a different region (Southern Ontario Canadian English), and testing them with passages spoken by a speaker of the opposite dialectal accent. Our results demonstrate that 12- but not 9-month-olds readily recognize words in the face of dialectal variation

    Linguistic processing of accented speech across the lifespan.

    Get PDF
    In most of the world, people have regular exposure to multiple accents. Therefore, learning to quickly process accented speech is a prerequisite to successful communication. In this paper, we examine work on the perception of accented speech across the lifespan, from early infancy to late adulthood. Unfamiliar accents initially impair linguistic processing by infants, children, younger adults, and older adults, but listeners of all ages come to adapt to accented speech. Emergent research also goes beyond these perceptual abilities, by assessing links with production and the relative contributions of linguistic knowledge and general cognitive skills. We conclude by underlining points of convergence across ages, and the gaps left to face in future work

    Malignant Progression in Two Children with Multiple Osteochondromas

    Get PDF
    Multiple Osteochondromas (MO) is a disease of benign bony growths with a low incidence of malignant transformation. Secondary chondrosarcoma in children is rare even in children with MO. Making a diagnosis of malignancy in low-grade cartilage tumors is challenging and requires consideration of clinical, radiographic, and histopathological factors. We report two cases of skeletally immature patients with MO who presented with rapidly enlarging and radiographically aggressive lesions consistent with malignant transformation. Both underwent allograft reconstruction of the involved site with no signs of recurrence or metastatic disease at a minimum of four-year follow-up

    Diversity and Abundance of Ice Nucleating Strains of Pseudomonas syringae in a Freshwater Lake in Virginia, USA

    Get PDF
    The bacterium Pseudomonas syringae is found in a variety of terrestrial and aquatic environments. Some strains of P. syringae express an ice nucleation protein (hereafter referred to as Ice+) allowing them to catalyze the heterogeneous freezing of water. Though P. syringae has been sampled intensively from freshwater sources in France, little is known about the genetic diversity of P. syringae in natural aquatic habitats in North America. We collected samples of freshwater from three different depths in Claytor Lake, Virginia, USA between November 2015 and June 2016. Samples were plated on non-selective medium (TSA) and on medium selective for Pseudomonas (KBC) and closely related species to estimate the total number of culturable bacteria and of Pseudomonas, respectively. A droplet freezing assay was used to screen colonies for the Ice+ phenotype. Ice+ colonies were then molecularly identified based on the cts (citrate synthase) gene and the 16S rDNA gene. Phylogenetic analysis of cts sequences showed a surprising diversity of phylogenetic subgroups of P. syringae. Frequencies of Ice+ isolates on P. syringae selective medium ranged from 0 to 15% per sample with the highest frequency being found in spring. Our work shows that freshwater lakes can be a significant reservoir of Ice+ P. syringae. Future work is needed to determine the contribution of P. syringae from freshwater lakes to the P. syringae populations present in the atmosphere and on plants and, in particular, if freshwater lakes could be an inoculum source of P. syringae-caused plant disease outbreaks

    Sources, Occurrence and Characteristics of Fluorescent Biological Aerosol Particles Measured Over the Pristine Southern Ocean.

    Get PDF
    In this study, we investigate the occurrence of primary biological aerosol particles (PBAP) over all sectors of the Southern Ocean (SO) based on a 90-day data set collected during the Antarctic Circumnavigation Expedition (ACE) in austral summer 2016-2017. Super-micrometer PBAP (1-16 µm diameter) were measured by a wide band integrated bioaerosol sensor (WIBS-4). Low (3σ) and high (9σ) fluorescence thresholds are used to obtain statistics on fluorescent and hyper-fluorescent PBAP, respectively. Our focus is on data obtained over the pristine ocean, that is, more than 200 km away from land. The results indicate that (hyper-)fluorescent PBAP are correlated to atmospheric variables associated with sea spray aerosol (SSA) particles (wind speed, total super-micrometer aerosol number concentration, chloride and sodium concentrations). This suggests that a main source of PBAP over the SO is SSA. The median percentage contribution of fluorescent and hyper-fluorescent PBAP to super-micrometer SSA was 1.6% and 0.13%, respectively. We demonstrate that the fraction of (hyper-)fluorescent PBAP to total super-micrometer particles positively correlates with concentrations of bacteria and several taxa of pythoplankton measured in seawater, indicating that marine biota concentrations modulate the PBAP source flux. We investigate the fluorescent properties of (hyper-)fluorescent PBAP for several events that occurred near land masses. We find that the fluorescence signal characteristics of particles near land is much more variable than over the pristine ocean. We conclude that the source and concentration of fluorescent PBAP over the open ocean is similar across all sampled sectors of the SO

    The value of remote marine aerosol measurements for constraining radiative forcing uncertainty

    Get PDF
    Aerosol measurements over the Southern Ocean are used to constrain aerosol–cloud interaction radiative forcing (RFaci) uncertainty in a global climate model. Forcing uncertainty is quantified using 1 million climate model variants that sample the uncertainty in nearly 30 model parameters. Measurements of cloud condensation nuclei and other aerosol properties from an Antarctic circumnavigation expedition strongly constrain natural aerosol emissions: default sea spray emissions need to be increased by around a factor of 3 to be consistent with measurements. Forcing uncertainty is reduced by around 7 % using this set of several hundred measurements, which is comparable to the 8 % reduction achieved using a diverse and extensive set of over 9000 predominantly Northern Hemisphere measurements. When Southern Ocean and Northern Hemisphere measurements are combined, uncertainty in RFaci is reduced by 21 %, and the strongest 20 % of forcing values are ruled out as implausible. In this combined constraint, observationally plausible RFaci is around 0.17 W m−2 weaker (less negative) with 95 % credible values ranging from −2.51 to −1.17 W m−2 (standard deviation of −2.18 to −1.46 W m−2). The Southern Ocean and Northern Hemisphere measurement datasets are complementary because they constrain different processes. These results highlight the value of remote marine aerosol measurements

    Circum-Antarctic abundance and properties of CCN and INPs

    Get PDF
    Aerosol particles acting as cloud condensation nuclei (CCN) or ice-nucleating particles (INPs) play a major role in the formation and glaciation of clouds. Thereby they exert a strong impact on the radiation budget of the Earth. Data on abundance and properties of both types of particles are sparse, especially for remote areas of the world, such as the Southern Ocean (SO). In this work, we present unique results from ship-borne aerosol-particle-related in situ measurements and filter sampling in the SO region, carried out during the Antarctic Circumnavigation Expedition (ACE) in the austral summer of 2016–2017. An overview of CCN and INP concentrations over the Southern Ocean is provided and, using additional quantities, insights regarding possible CCN and INP sources and origins are presented. CCN number concentrations spanned 2 orders of magnitude, e.g. for a supersaturation of 0.3 % values ranged roughly from 3 to 590 cm−3. CCN showed variable contributions of organic and inorganic material (inter-quartile range of hygroscopicity parameter κ from 0.2 to 0.9). No distinct size dependence of κ was apparent, indicating homogeneous composition across sizes (critical dry diameter on average between 30 and 110 nm). The contribution of sea spray aerosol (SSA) to the CCN number concentration was on average small. Ambient INP number concentrations were measured in the temperature range from −5 to −27 ∘C using an immersion freezing method. Concentrations spanned up to 3 orders of magnitude, e.g. at −16 ∘C from 0.2 to 100 m−3. Elevated values (above 10 m−3 at −16 ∘C) were measured when the research vessel was in the vicinity of land (excluding Antarctica), with lower and more constant concentrations when at sea. This, along with results of backward-trajectory analyses, hints towards terrestrial and/or coastal INP sources being dominant close to ice-free (non-Antarctic) land. In pristine marine areas INPs may originate from both oceanic sources and/or long-range transport. Sampled aerosol particles (PM10) were analysed for sodium and methanesulfonic acid (MSA). Resulting mass concentrations were used as tracers for primary marine and secondary aerosol particles, respectively. Sodium, with an average mass concentration around 2.8 µg m−3, was found to dominate the sampled, identified particle mass. MSA was highly variable over the SO, with mass concentrations up to 0.5 µg m−3 near the sea ice edge. A correlation analysis yielded strong correlations between sodium mass concentration and particle number concentration in the coarse mode, unsurprisingly indicating a significant contribution of SSA to that mode. CCN number concentration was highly correlated with the number concentration of Aitken and accumulation mode particles. This, together with a lack of correlation between sodium mass and Aitken and accumulation mode number concentrations, underlines the important contribution of non-SSA, probably secondarily formed particles, to the CCN population. INP number concentrations did not significantly correlate with any other measured aerosol physico-chemical parameter.</p
    corecore