159 research outputs found

    Local Catalytic Ignition during CO Oxidation on Low-Index Pt and Pd Surfaces: A Combined PEEM, MS, and DFT Study

    Get PDF
    Shedding light on light-off: Photoemission electron microscopy, DFT, and microkinetic modeling were used to examine the local kinetics in the CO oxidation on individual grains of a polycrystalline sample. It is demonstrated that catalytic ignition (“light-off”) occurs easier on Pd(hkl) domains than on corresponding Pt(hkl) domains. The isothermal determination of kinetic transitions, commonly used in surface science, is fully consistent with the isobaric reactivity monitoring applied in technical catalysis

    Phase coexistence of multiple copper oxides on AgCu catalysts during ethylene epoxidation

    Get PDF
    Alloy catalysts under reaction conditions are complex entities. In oxidizing atmospheres, multiple phases can coexist on a catalyst s surface as a result of phase segregation and preferential oxidation. Such a scenario can result in unusual substoichiometric and metastable phases that could play important roles in catalytic processes. For instance, AgCu alloys known to exhibit enhanced epoxide selectivity in partial oxidation of ethylene form an oxide like surface structure under reaction conditions. Under these conditions, copper oxides are stable, while silver oxides are not. Consequently, copper segregates to the alloy s surface and forms an oxide overlayer. Little is known about the structure or function of such overlayers, and it is unknown whether they play an active role in the catalyst s enhanced selectivity. In order to develop a clearer picture of such catalysts, the current work utilizes several in situ spectroscopic and microscopic techniques to examine the copper oxide phases that form when AgCu is exposed to epoxidation conditions. It is found that several forms of oxidic Cu coexist simultaneously on the active catalyst s surface, namely, CuO, Cu2O, and some previously unreported form of oxidized Cu, referred to here as CuxOy. Online product analysis, performed during the in situ spectroscopic measurements, shows that increased epoxide selectivity is correlated with the presence of mixed copper oxidation states and the presence of the CuxOy species. These results support previous theoretical predictions that oxidic copper overlayers on silver play an active role in epoxidation. These results furthermore emphasize the need for in situ spectromicroscopic methods to understand the complexity of alloy catalyst

    Crossover from directed percolation to compact directed percolation

    Full text link
    We study critical spreading in a surface-modified directed percolation model in which the left- and right-most sites have different occupation probabilities than in the bulk. As we vary the probability for growth at an edge, the critical exponents switch from the compact directed percolation class to ordinary directed percolation. We conclude that the nonuniversality observed in models with multiple absorbing configurations cannot be explained as a simple surface effect.Comment: 4 pages, Revtex, 5 figures postscrip

    Effect of Solution Composition on the Energy Production by Capacitive Mixing in Membrane-Electrode Assembly

    Get PDF
    The final edited version of the paper can be found at: http://pubs.acs.org/articlesonrequest/AOR-c9UMxSzGY3eiU5SENNgT The complete citation is: Ahualli, S.; et al. Effect of Solution Composition on the Energy Production by Capacitive Mixing in Membrane-Electrode Assembly. Journal of Physical Chemistry, 118(29): 15590-15599 (2014). DOI:10.1021/jp504461mOpen access in the Journal on May 26, 2015In this work we consider the extent to which the presence of multi-valent ions in solution modifies the equilibrium and dynamics of the energy production in a capacitive cell built with ion-exchange membranes in contact with high surface area electrodes. The cell potential in open circuit (OCV) is controlled by the difference between both membrane potentials, simulated as constant volume charge regions. A theoretical model is elaborated for steady state OCV, first in the case of monovalent solutions, as a reference. This is compared to the results in multi-ionic systems, containing divalent cations in concentrations similar to those in real sea water. It is found that the OCV is reduced by about 25 % (as compared to the results in pure NaCl solutions) due to the presence of the divalent ions, even in low concentrations. Interestingly, this can be related to the “uphill” transport of such ions against their concentration gradients. On the contrary, their effect on the dynamics of the cell potential is negligible in the case of highly charged membranes. The comparison between model predictions and experimental results shows a very satisfactory agreement, and gives clues for the practical application of these recently introduced energy production methods.The research leading to these results received funding from the European Union 7th Framework Programme (FP7/2007-2013) under agreement No. 256868. Further financial support from Junta de Andalucia, Spain (PE2012-FQM 694) is also acknowledged. One of us, M.M.F., received financial support throughan FPU grant from the Universityof Granada

    Dynamic recruitment of resting state sub-networks

    Get PDF
    Resting state networks (RSNs) are of fundamental importance in human systems neuroscience with evidence suggesting that they are integral to healthy brain function and perturbed in pathology. Despite rapid progress in this area, the temporal dynamics governing the functional connectivities that underlie RSN structure remain poorly understood. Here, we present a framework to help further our understanding of RSN dynamics. We describe a methodology which exploits the direct nature and high temporal resolution of magnetoencephalography (MEG). This technique, which builds on previous work, extends from solving fundamental confounds in MEG (source leakage) to multivariate modelling of transient connectivity. The resulting processing pipeline facilitates direct (electrophysiological) measurement of dynamic functional networks. Our results show that, when functional connectivity is assessed in small time windows, the canonical sensorimotor network can be decomposed into a number of transiently synchronising sub-networks, recruitment of which depends on current mental state. These rapidly changing sub-networks are spatially focal with, for example, bilateral primary sensory and motor areas resolved into two separate sub-networks. The likely interpretation is that the larger canonical sensorimotor network most often seen in neuroimaging studies reflects only a temporal aggregate of these transient sub-networks. Our approach opens new frontiers to study RSN dynamics, showing that MEG is capable of revealing the spatial, temporal and spectral signature of the human connectome in health and disease

    The vitamin D, ionised calcium and parathyroid hormone axis of cerebral capillary function: Therapeutic considerations for vascular-based neurodegenerative disorders

    Get PDF
    Blood-brain barrier dysfunction characterised by brain parenchymal extravasation of plasma proteins may contribute to risk of neurodegenerative disorders, however the mechanisms for increased capillary permeability are not understood. Increasing evidence suggests vitamin D confers central nervous system benefits and there is increasing demand for vitamin D supplementation. Vitamin D may influence the CNS via modulation of capillary function, however such effects may be indirect as it has a central role in maintaining calcium homeostasis, in concert with calcium regulatory hormones. This study utilised an integrated approach and investigated the effects of vitamin D supplementation, parathyroid tissue ablation (PTX), or exogenous infusion of parathyroid hormone (PTH) on cerebral capillary integrity. Parenchymal extravasation of immunoglobulin G (IgG) was used as a marker of cerebral capillary permeability. In C57BL/6J mice and Sprague Dawley rats, dietary vitamin D was associated with exaggerated abundance of IgG within cerebral cortex (CTX) and hippocampal formation (HPF). Vitamin D was also associated with increased plasma ionised calcium (iCa) and decreased PTH. A response to dose was suggested and parenchymal effects persisted for up to 24 weeks. Ablation of parathyroid glands increased CTX- and HPF-IgG abundance concomitant with a reduction in plasma iCa. With the provision of PTH, iCa levels increased, however the PTH treated animals did not show increased cerebral permeability. Vitamin D supplemented groups and rats with PTH-tissue ablation showed modestly increased parenchymal abundance of glial-fibrillary acidic protein (GFAP), a marker of astroglial activation. PTH infusion attenuated GFAP abundance. The findings suggest that vitamin D can compromise capillary integrity via a mechanism that is independent of calcium homeostasis. The effects of exogenous vitamin D supplementation on capillary function and in the context of prevention of vascular neurodegenerative conditions should be considered in the context of synergistic effects with calcium modulating hormones
    • 

    corecore