19 research outputs found

    Semantic network analysis of vaccine sentiment in online social media.

    Get PDF
    OBJECTIVE: To examine current vaccine sentiment on social media by constructing and analyzing semantic networks of vaccine information from highly shared websites of Twitter users in the United States; and to assist public health communication of vaccines. BACKGROUND: Vaccine hesitancy continues to contribute to suboptimal vaccination coverage in the United States, posing significant risk of disease outbreaks, yet remains poorly understood. METHODS: We constructed semantic networks of vaccine information from internet articles shared by Twitter users in the United States. We analyzed resulting network topology, compared semantic differences, and identified the most salient concepts within networks expressing positive, negative, and neutral vaccine sentiment. RESULTS: The semantic network of positive vaccine sentiment demonstrated greater cohesiveness in discourse compared to the larger, less-connected network of negative vaccine sentiment. The positive sentiment network centered around parents and focused on communicating health risks and benefits, highlighting medical concepts such as measles, autism, HPV vaccine, vaccine-autism link, meningococcal disease, and MMR vaccine. In contrast, the negative network centered around children and focused on organizational bodies such as CDC, vaccine industry, doctors, mainstream media, pharmaceutical companies, and United States. The prevalence of negative vaccine sentiment was demonstrated through diverse messaging, framed around skepticism and distrust of government organizations that communicate scientific evidence supporting positive vaccine benefits. CONCLUSION: Semantic network analysis of vaccine sentiment in online social media can enhance understanding of the scope and variability of current attitudes and beliefs toward vaccines. Our study synthesizes quantitative and qualitative evidence from an interdisciplinary approach to better understand complex drivers of vaccine hesitancy for public health communication, to improve vaccine confidence and vaccination coverage in the United States

    Pooled sequencing of 531 genes in inflammatory bowel disease identifies an associated rare variant in BTNL2 and implicates other immune related genes.

    Get PDF
    The contribution of rare coding sequence variants to genetic susceptibility in complex disorders is an important but unresolved question. Most studies thus far have investigated a limited number of genes from regions which contain common disease associated variants. Here we investigate this in inflammatory bowel disease by sequencing the exons and proximal promoters of 531 genes selected from both genome-wide association studies and pathway analysis in pooled DNA panels from 474 cases of Crohn's disease and 480 controls. 80 variants with evidence of association in the sequencing experiment or with potential functional significance were selected for follow up genotyping in 6,507 IBD cases and 3,064 population controls. The top 5 disease associated variants were genotyped in an extension panel of 3,662 IBD cases and 3,639 controls, and tested for association in a combined analysis of 10,147 IBD cases and 7,008 controls. A rare coding variant p.G454C in the BTNL2 gene within the major histocompatibility complex was significantly associated with increased risk for IBD (p = 9.65x10-10, OR = 2.3[95% CI = 1.75-3.04]), but was independent of the known common associated CD and UC variants at this locus. Rare (T) or decreased risk (IL12B p.V298F, and NICN p.H191R) of IBD. These results provide additional insights into the involvement of the inhibition of T cell activation in the development of both sub-phenotypes of inflammatory bowel disease. We suggest that although rare coding variants may make a modest overall contribution to complex disease susceptibility, they can inform our understanding of the molecular pathways that contribute to pathogenesis

    ChatterGrabber: A Lightweight Easy to Use Social Media Surveillance Toolkit

    Get PDF
    Chattergrabber is an open source, natural language processing based toolkit for public health social media surveillance. ChatterGrabber is designed to collect and categorize a high volume of content at a low cost, providing a readily deployable solution for Epidemiologists to track emergent outbreaks in the field and an additional signal for syndromic surveillance. Sensitivity and specificity of results are maximized through the use of a novel pull method and genetic algorithm optimization of text classifiers. This enables the creation of long term surveillance experiments wholly independent of member reporter networks and hashtag tracking. Such records may also yield additional soft data through shared symptoms, rumors, and observations crucial to an epidemiological investigation

    Inorganic analysis

    No full text
    corecore