63 research outputs found

    Textures of eclogites and blueschists from Syros island, Greece: inferences for elastic anisotropy of subducted oceanic crust

    Get PDF
    Many blueschists and eclogites are inferred to have formed from oceanic basalts in subducted slabs. Knowledge of their elastic behaviour is essential for reconstructing the internal structure of subduction zones. The Cycladic Blueschist Unit, exposed on Syros Island (Greece), contains rocks belonging to an exhumed Tertiary subduction complex. They were possibly part of a subduction channel, a shear zone above the subducting slab in which exhumation is possible during subduction. Intense plastic deformation, forming crystallographic preferred orientations (CPO), accompanied blueschist and eclogite metamorphism. CPO of the constituent minerals in the collected samples was determined by time-of-flight neutron diffraction. Two samples are foliated fine-grained blueschists with strong CPO, rich in glaucophane, zoisite and phengite. Two coarser-grained eclogite samples rich in omphacite and clinozoisite, or glaucophane, have weaker CPO. Vp and Vs anisotropies were computed from the orientation distribution function and single-crystal elastic constants. All samples show velocity maxima parallel to the mineral lineation, and minima normal to the foliation, providing important constraints on orientations of seismic anisotropy in subduction channels. Vp anisotropies are up to three times higher (6.5-12%) in the blueschists than in the eclogites (3-4%), pointing to a potentially important lithological control of elastic anisotropy in subducted oceanic crust

    The tectono-metamorphic evolution of a dismembered ophiolite (Tinos, Cyclades, Greece)

    Get PDF
    The six exposures of the Upper tectonic Unit of the Cycladic Massif occurring on the island of Tinos are shown to comprise a metamorphosed dismembered ophiolite complex. The common stratigraphic section consisting of tens-of-metres- thick tectonic slices of mafic phyllites overlain by serpentinites and gabbros is considered to have been derived by a combination of thrusting during obduction and subsequent attenuation by low-angle normal faults. All rock types show evidence of a phase of regional greenschist-facies metamorphism, which in the case of the phyllites is accompanied by penetrative deformation. The greenschist-facies metamorphism in gabbros is preceded by high temperature sea-floor amphibolite-facies alteration, whereas in the serpentinites, the antigorite + forsterite greenschist-facies assemblage overprinted an earlier low temperature lizardite serpentinite. Trace element patterns of the mafic phyllites and a harzburgitic origin of meta-serpentinites suggest a supra subduction zone (SSZ) affinity for the ophiolitic suite. ÎŽ81O values of phyllites, gabbros and serpentinites range from 6 to 15‰. Model calculations indicate that such values are consistent with low temperature (50-200 °C) alteration of parent rocks by sea-water at varying water/rock ratios. This would agree with the early low temperature mineralogy of the serpentinites, but the early high temperature alteration of the gabbros would require the presence of 18O-enriched sea-water. The following overall history is suggested for Tinos ophiolitic slices. (1) Oceanic crust was generated at a supra-subduction zone spreading centre with high temperature alteration of gabbros. (2) Tectonic disturbance (its early hot stages recorded in an amphibolitic shear zone at the base of serpentinites) brought the already cooled ultramafics into direct contact with sea-water and caused low-T serpentinization. (3) Tectonism after cooling involved thrusting which caused repetition and inversion of the original order of the oceanic suite. (4) Regional metamorphism of all the ophiolite components at greenschist-facies conditions (∌450 °C) overprinted the early alteration mineralogy. It was probably induced by continued thrusting and piling up of nappes. The Tinos ophiolite, dated as late Cretaceous and genetically related to other low pressure rock-units of the same age in the Aegean, differs in age and degree of dismemberment and metamorphism from ophiolites in mainland Greece
    • 

    corecore