392 research outputs found

    The next level : video gaming, cognition and motivation in surgical simulator training

    Get PDF
    Image guided surgery uses small incisions or existing entry ports of the body in order to decrease surgical trauma which will hopefully lead to less infections, complications and number of days needed in the hospital. It is associated with great difficulties and a steep learning curve due to several reasons such as inverted movements and 2D representation of the operating area. In order to excel in minimal invasive surgery a large amount of training is required which has spurred the rise of virtual reality (VR) surgical simulators offering a safe training environment with the possibility of customized scenarios and quantifiable feedback. Another advantage with VR simulators is easily conducted research due to objective assessment of performance and standardized task content and scenarios. Previous research has identified visual-spatial ability, the ability to mentally rotate and manipulate objects as well as visual working memory, the ability to hold visual information during a delay and recall that information, to be important for simulator training and performance. Video gaming experience has also been identified as an important background factor. This thesis consists of work derived from four studies that all take advantage of VR simulators as a tool for investigating which individual factors are needed for performance and training of minimal invasive surgery and whether or not they can be altered. In the first study the hypothesis was that the importance of visual-spatial ability (VSA) and visual working memory (VWM) would differ with different simulator task content. 25 subjects were tested for VSA, VWM and performance in three different simulators. A multivariate analysis showed that the importance differed; one task seemed to be more visually loaded than the others. That result was followed up in study II that examined whether it was possible to actually improve simulator performance by video game training and if the transfer effect differed according to simulator and video game task content. 30 subjects were matched and randomized into training with a 2D chess game or a 3D first person shooter game for five weeks, pre and post training subjects were tested with two different simulators. A control group consisting of 10 subjects was also tested. There was a transfer effect, surprisingly also from the 2D game. Suspicions about a general cognitive workload lead to the aim in study III that investigated whether simulator performance would predict written examinations results. 158 subjects were tested in a simulator and a written examination in basic surgery. There was a performanceexamination correlation in female but not male subjects, which lead to study IV that investigated the role of motivation for surgical performance. In study IV, 30 subjects were tested for motivation while training in a surgical simulator. Motivation as defined by the selfdetermination theory correlated only in male subjects to performance when highly motivated medical students were examined. It appeared to be less important for performance than visual spatial ability. Training in surgical simulators enhanced subjects’ interest in choosing surgery as a future work field. The thesis identifies the importance of certain background factors and suggests alternate means of minimal invasive training that will meet the requirements of tomorrow´s surgeons, taking surgical training to the next level

    Impaired Induction of Adhesion Molecule Expression in Immortalized Endothelial Cells Leads to Functional Defects in Dynamic Interactions With Lymphocytes

    Get PDF
    Immortalization should overcome the problem of short lifespan and difficult culture of endothelial cells that limited their use in functional studies. We used four different immortalized endothelial cell lines to study dynamic interactions with lymphocytes. Surprisingly, tumor necrosis factor (TNF)α-stimulated human umbilical vein endothelial cells (HUVECs) or human dermal microvascular endothelial cells (HDMECs) readily supported rolling and binding of lymphocytes, whereas none of the immortalized cell lines did. As rolling interactions are primarily mediated by selectins and vascular cell adhesion molecule (VCAM)-1, the endothelial cells were analyzed regarding expression of selectins and other adhesion molecules. Interestingly, cell surface expression of E-selectin could only be detected on HUVEC and HDMEC. Immunocytochemistry showed that some immortalized endothelial cells expressed E-selectin intracellularly following TNFα stimulation, suggesting translation but defective post-translational processing or transport of the molecule. In contrast, other immortalized cell lines did not have detectable levels of E-selectin mRNA, suggesting impaired transcription. VCAM-1 could only be induced on normal and human placental microvascular endothelial cell-A2 endothelial cells, whereas all cell lines expressed intercellular adhesion molecule-1 following TNF stimulation. The immortalized endothelial cells tested here have lost functions that are required for dynamic interactions with immune cells and that are common to primary endothelial cells

    Strong paramagnon scattering in single atom Pd contacts

    Get PDF
    Among all transition metals, palladium (Pd) has the highest density of states at the Fermi energy at low temperatures yet does not fulfill the Stoner criterion for ferromagnetism. However, its close vicinity to magnetism renders it a nearly ferromagnetic metal, which hosts paramagnons, strongly damped spin fluctuations. Here we compare the total and the differential conductance of mono-atomic contacts consisting of single Pd and Cobalt (Co) atoms between Pd electrodes. Transport measurements reveal a conductance for Co of 1\,G0, while for Pd we obtain 2\,G0. The differential conductance of mono-atomic Pd contacts shows a drop with increasing bias, which gives rise to a peculiar \Lambda-shaped spectrum. Supported by theoretical calculations we correlate this finding with the lifetime of hot quasi-particles in Pd which is strongly influenced by paramagnon scattering. In contrast to this, Co adatoms locally induce magnetic order and transport through single cobalt atoms remains unaffected by paramagnon scattering, consistent with theory.PostprintPeer reviewe

    Remotely controlled isomer selective molecular switching

    Get PDF
    Nonlocal addressing—the “remote control”—of molecular switches promises more efficient processing for information technology, where fast speed of switching is essential. The surface state of the (111) facets of noble metals, a confined two-dimensional electron gas, provides a medium that enables transport of signals over large distances and hence can be used to address an entire ensemble of molecules simultaneously with a single stimulus. In this study we employ this characteristic to trigger a conformational switch in anthradithiophene (ADT) molecules by injection of hot carriers from a scanning tunneling microscope (STM) tip into the surface state of Cu(111). The carriers propagate laterally and trigger the switch in molecules at distances as far as 100 nm from the tip location. The switching process is shown to be long-ranged, fully reversible, and isomer selective, discriminating between cis and trans diastereomers, enabling maximum control.PostprintPeer reviewe

    Bipolar conductance switching of single anthradithiophene molecules

    Get PDF
    The authors acknowledge funding by the Emmy-Noether-Program of the Deutsche Forschungsgemeinschaft, the SFB 767, and the Baden-Württemberg Stiftung. R.P. and A.A. thank the Basque Departamento de Universidades e Investigacion (grant no. IT-756-13) and the Spanish Ministerio de Economia y Competitividad (grant no. FIS2013-48286-C2-8752-P) for financial support.Single molecular switches are basic device elements in organic electronics. The pentacene analogue anthradithiophene (ADT) shows a fully reversible binary switching between different adsorption conformations on a metallic surface accompanied by a charge transfer. These transitions are activated locally in single molecules in a low-temperature scanning tunneling microscope . The switching induces changes between bistable orbital structures and energy level alignment at the interface. The most stable geometry, the “off” state, which all molecules adopt upon evaporation, corresponds to a short adsorption distance at which the electronic interactions of the acene rings bend the central part of the molecule toward the surface accompanied by a significant charge transfer from the metallic surface to the ADT molecules. This leads to a shift of the lowest unoccupied molecular orbital down to the Fermi level (EF). In the “on” state the molecule has a flat geometry at a larger distance from the surface; consequently the interaction is weaker, resulting in a negligible charge transfer with an orbital structure resembling the highest occupied molecular orbital when imaged close to EF. The potential barrier between these two states can be overcome reversibly by injecting charge carriers locally into individual molecules. Voltage-controlled current traces show a hysteresis characteristic of a bipolar switching behavior. The interpretation is supported by first-principles calculations.PostprintPeer reviewe

    Visualizing chiral interactions in carbohydrates adsorbed on Au(111) by high-resolution STM imaging

    Get PDF
    Carbohydrates are the most abundant organic material on Earth and the structural “material of choice” in many living systems. Nevertheless, design and engineering of synthetic carbohydrate materials presently lag behind that for protein and nucleic acids. Bottom-up engineering of carbohydrate materials demands an atomic-level understanding of their molecular structures and interactions in condensed phases. Here, high-resolution scanning tunneling microscopy (STM) is used to visualize at submolecular resolution the three-dimensional structure of cellulose oligomers assembled on Au(1111) and the interactions that drive their assembly. The STM imaging, supported by ab initio calculations, reveals the orientation of all glycosidic bonds and pyranose rings in the oligomers, as well as details of intermolecular interactions between the oligomers. By comparing the assembly of D- and L-oligomers, these interactions are shown to be enantioselective, capable of driving spontaneous enantioseparation of cellulose chains from its unnatural enantiomer and promoting the formation of engineered carbohydrate assemblies in the condensed phases

    Electric-field-driven direct desulfurization

    Get PDF
    The ability to elucidate the elementary steps of a chemical reaction at the atomic scale is important for the detailed understanding of the processes involved, which is key to uncover avenues for improved reaction paths. Here, we track the chemical pathway of an irreversible direct desulfurization reaction of tetracenothiophene adsorbed on the Cu(111) closed-packed surface at the submolecular level. Using the precise control of the tip position in a scanning tunneling microscope and the electric field applied across the tunnel junction, the two carbon–sulfur bonds of a thiophene unit are successively cleaved. Comparison of spatially mapped molecular states close to the Fermi level of the metallic substrate acquired at each reaction step with density functional theory calculations reveals the two elementary steps of this reaction mechanism. The first reaction step is activated by an electric field larger than 2 V nm–1, practically in absence of tunneling electrons, opening the thiophene ring and leading to a transient intermediate. Subsequently, at the same threshold electric field and with simultaneous injection of electrons into the molecule, the exergonic detachment of the sulfur atom is triggered. Thus, a stable molecule with a bifurcated end is obtained, which is covalently bound to the metallic surface. The sulfur atom is expelled from the vicinity of the molecule.PostprintPeer reviewe

    Visualizing Chiral Interactions in Carbohydrates Adsorbed on Au(111) by High‐Resolution STM Imaging

    Get PDF
    Carbohydrates are the most abundant organic material on Earth and the structural “material of choice” in many living systems. Nevertheless, design and engineering of synthetic carbohydrate materials presently lag behind that for protein and nucleic acids. Bottom-up engineering of carbohydrate materials demands an atomic-level understanding of their molecular structures and interactions in condensed phases. Here, high-resolution scanning tunneling microscopy (STM) is used to visualize at submolecular resolution the three-dimensional structure of cellulose oligomers assembled on Au(1111) and the interactions that drive their assembly. The STM imaging, supported by ab initio calculations, reveals the orientation of all glycosidic bonds and pyranose rings in the oligomers, as well as details of intermolecular interactions between the oligomers. By comparing the assembly of D- and L-oligomers, these interactions are shown to be enantioselective, capable of driving spontaneous enantioseparation of cellulose chains from its unnatural enantiomer and promoting the formation of engineered carbohydrate assemblies in the condensed phases
    corecore