2,401 research outputs found
Connectivity percolation in suspensions of hard platelets
We present a study on connectivity percolation in suspensions of hard
platelets by means of Monte Carlo simulation. We interpret our results using a
contact-volume argument based on an effective single--particle cell model. It
is commonly assumed that the percolation threshold of anisotropic objects
scales as their inverse aspect ratio. While this rule has been shown to hold
for rod-like particles, we find that for hard plate-like particles the
percolation threshold is non-monotonic in the aspect ratio. It exhibits a
shallow minimum at intermediate aspect ratios and then saturates to a constant
value. This effect is caused by the isotropic-nematic transition pre-empting
the percolation transition. Hence the common strategy to use highly
anisotropic, conductive particles as fillers in composite materials in order to
produce conduction at low filler concentration is expected to fail for
plate-like fillers such as graphene and graphite nanoplatelets
Data from: Genotyping-by-Sequencing for Populus Population Genomics: An Assessment of Genome Sampling Patterns and Filtering Approaches
Continuing advances in nucleotide sequencing technology are inspiring a suite of genomic approaches in studies of natural populations. Researchers are faced with data management and analytical scales that are increasing by orders of magnitude. With such dramatic advances comes a need to understand biases and error rates, which can be propagated and magnified in large-scale data acquisition and processing. Here we assess genomic sampling biases and the effects of various population-level data filtering strategies in a genotyping-by-sequencing (GBS) protocol. We focus on data from two species of Populus, because this genus has a relatively small genome and is emerging as a target for population genomic studies. We estimate the proportions and patterns of genomic sampling by examining the Populus trichocarpa genome (Nisqually-1), and demonstrate a pronounced bias towards coding regions when using the methylation-sensitive ApeKI restriction enzyme in this species. Using population-level data from a closely related species (P. tremuloides), we also investigate various approaches for filtering GBS data to retain high-depth, informative SNPs that can be used for population genetic analyses. We find a data filter that includes the designation of ambiguous alleles resulted in metrics of population structure and Hardy-Weinberg equilibrium that were most consistent with previous studies of the same populations based on other genetic markers. Analyses of the filtered data (27,910 SNPs) also resulted in patterns of heterozygosity and population structure similar to a previous study using microsatellites. Our application demonstrates that technically and analytically simple approaches can readily be developed for population genomics of natural populations
Numerical loop quantum cosmology: an overview
A brief review of various numerical techniques used in loop quantum cosmology
and results is presented. These include the way extensive numerical simulations
shed insights on the resolution of classical singularities, resulting in the
key prediction of the bounce at the Planck scale in different models, and the
numerical methods used to analyze the properties of the quantum difference
operator and the von Neumann stability issues. Using the quantization of a
massless scalar field in an isotropic spacetime as a template, an attempt is
made to highlight the complementarity of different methods to gain
understanding of the new physics emerging from the quantum theory. Open
directions which need to be explored with more refined numerical methods are
discussed.Comment: 33 Pages, 4 figures. Invited contribution to appear in Classical and
Quantum Gravity special issue on Non-Astrophysical Numerical Relativit
NNLO corrections to top-pair production at hadron colliders: the all-fermionic scattering channels
This is a second paper in our ongoing calculation of the
next-to-next-to-leading order (NNLO) QCD correction to the total inclusive
top-pair production cross-section at hadron colliders. In this paper we
calculate the reaction which was not considered
in our previous work on due to its phenomenologically
negligible size. We also calculate all remaining fermion-pair-initiated
partonic channels and that contribute to top-pair
production starting from NNLO. The contributions of these reactions to the
total cross-section for top-pair production at the Tevatron and LHC are small,
at the permil level. The most interesting feature of these reactions is their
characteristic logarithmic rise in the high energy limit. We compute the
constant term in the leading power behavior in this limit, and achieve
precision that is an order of magnitude better than the precision of a recent
theoretical prediction for this constant. All four partonic reactions computed
in this paper are included in our numerical program Top++. The calculation of
the NNLO corrections to the two remaining partonic reactions,
and , is ongoing.Comment: 1+16 pages; 3 figure
Suppression factors in diffractive photoproduction of dijets
After new publications of H1 data for the diffractive photoproduction of
dijets, which overlap with the earlier published H1 data and the recently
published data of the ZEUS collaboration, have appeared, we have recalculated
the cross sections for this process in next-to-leading order (NLO) of
perturbative QCD to see whether they can be interpreted consistently. The
results of these calculations are compared to the data of both collaborations.
We find that the NLO cross sections disagree with the data, showing that
factorization breaking occurs at that order. If direct and resolved
contributions are both suppressed by the same amount, the global suppression
factor depends on the transverse-energy cut. However, by suppressing only the
resolved contribution, also reasonably good agreement with all the data is
found with a suppression factor independent of the transverse-energy cut.Comment: 28 pages, 11 figures, 3 table
The Cyprinodon variegatus genome reveals gene expression changes underlying differences in skull morphology among closely related species
Genes in durophage intersection set at 15 dpf. This is a comma separated table of the genes in the 15 dpf durophage intersection set. Given are edgeR results for each pairwise comparison. Columns indicating whether a gene is included in the intersection set at a threshold of 1.5 or 2 fold are provided. (CSV 13ĂÂ kb
Exclusive diffractive processes and the quark substructure of mesons
Exclusive diffractive processes on the nucleon are investigated within a
model in which the quark-nucleon interaction is mediated by Pomeron exchange
and the quark substructure of mesons is described within a framework based on
the Dyson-Schwinger equations of QCD. The model quark-nucleon interaction has
four parameters which are completely determined by high-energy and elastic scattering data. The model is then used to predict vector-meson
electroproduction observables. The obtained - and -meson
electroproduction cross sections are in excellent agreement with experimental
data. The predicted dependence of -meson electroproduction also
agrees with experimental data. It is shown that confined-quark dynamics play a
central role in determining the behavior of the diffractive, vector-meson
electroproduction cross section. In particular, the onset of the asymptotic
behavior of the cross section is determined by a momentum scale that is
set by the current-quark masses of the quark and antiquark inside the vector
meson. This is the origin of the striking differences between the
dependence of -, - and -meson electroproduction cross
sections observed in recent experiments.Comment: 53 pages, 23 figures, revtex and epsfig. Minor additions to tex
DNA damage alters nuclear mechanics through chromatin reorganization
AbstractDNA double-strand breaks drive genomic instability. However, it remains unknown how these processes may affect the biomechanical properties of the nucleus and what role nuclear mechanics play in DNA damage and repair efficiency. Here, we have used Atomic Force Microscopy to investigate nuclear mechanical changes, arising from externally induced DNA damage. We found that nuclear stiffness is significantly reduced after cisplatin treatment, as a consequence of DNA damage signalling. This softening was linked to global chromatin decondensation, which improves molecular diffusion within the organelle. We propose that this can increase recruitment for repair factors. Interestingly, we also found that reduction of nuclear tension, through cytoskeletal relaxation, has a protective role to the cell and reduces accumulation of DNA damage. Overall, these changes protect against further genomic instability and promote DNA repair. We propose that these processes may underpin the development of drug resistance
Loop Quantum Cosmology: A Status Report
The goal of this article is to provide an overview of the current state of
the art in loop quantum cosmology for three sets of audiences: young
researchers interested in entering this area; the quantum gravity community in
general; and, cosmologists who wish to apply loop quantum cosmology to probe
modifications in the standard paradigm of the early universe. An effort has
been made to streamline the material so that, as described at the end of
section I, each of these communities can read only the sections they are most
interested in, without a loss of continuity.Comment: 138 pages, 15 figures. Invited Topical Review, To appear in Classical
and Quantum Gravity. Typos corrected, clarifications and references adde
Moments of Nucleon Light Cone Quark Distributions Calculated in Full Lattice QCD
Moments of the quark density, helicity, and transversity distributions are
calculated in unquenched lattice QCD. Calculations of proton matrix elements of
operators corresponding to these moments through the operator product expansion
have been performed on lattices for Wilson fermions at using configurations from the SESAM collaboration and at
using configurations from SCRI. One-loop perturbative renormalization
corrections are included. At quark masses accessible in present calculations,
there is no statistically significant difference between quenched and full QCD
results, indicating that the contributions of quark-antiquark excitations from
the Dirac Sea are small. Close agreement between calculations with cooled
configurations containing essentially only instantons and the full gluon
configurations indicates that quark zero modes associated with instantons play
a dominant role. Naive linear extrapolation of the full QCD calculation to the
physical pion mass yields results inconsistent with experiment. Extrapolation
to the chiral limit including the physics of the pion cloud can resolve this
discrepancy and the requirements for a definitive chiral extrapolation are
described.Comment: 53 Pages Revtex, 26 Figures, 9 Tables. Added additional reference and
updated referenced data in Table I
- âŠ