156 research outputs found

    UNCOVERING FACTORS INFLUENCING PUBLIC PERCEPTIONS OF FOOD BIOTECHNOLOGY

    Get PDF
    Significant divergence exists in public opinions about biotechnology. Although there is broad support for plant biotechnology for health benefits, opinions differ on the issue of animal genetics for pure economic benefits. While some are opposed to it, many are undecided about genetically modified foods. Considerable skepticism exists about scientists, corporations and government which have negative influence on public acceptance of food biotechnology. Consumers' personal attributes have significant influence on their views about various biotechnology issues.Research and Development/Tech Change/Emerging Technologies,

    CONSUMER ACCEPTANCE OF FOOD BIOTECHNOLOGY: WILLINGNESS TO BUY GENETICALLY MODIFIED FOOD PRODUCTS

    Get PDF
    Biotechnology is often viewed as the defining technology for the future of food and agriculture with the potential to deliver a wide range of economic and health benefits. Public acceptance of genetically modified food products is a critical factor for this emerging technology. Using data from a national survey, this study examines public acceptance of food biotechnology by modeling consumers' willingness to buy genetically modified foods. Empirical results suggest that younger, white, male and college educated individuals are more likely to accept food biotechnology. Public confidence in scientists, corporations, as well as government has significant effects on consumer acceptance of food biotechnology. While religious views influence consumer acceptance of food biotechnology, income and social/political orientations do not have significant effects. Empirical results indicate regional differences in the acceptance of genetically modified foods.Consumer/Household Economics,

    PUBLIC PERCEPTIONS OF BIOTECHNOLOGY AND ACCEPTANCE OF GENETICALLY MODIFIED FOOD

    Get PDF
    Public debate on biotechnology is embroiled in controversy over the risks and benefits associated with this emerging technology. Using data from a national survey, this study analyzes public acceptance of biotechnology in food production. Empirical results suggest that while there is general optimism about biotechnology, and support for its use in plants, public approval of its use in animals is perhaps more limited. Younger and more educated individuals are generally more supportive of biotechnology. Attitudes towards biotechnology differ substantially between males and females, and between whites and non-whites. While people's religious and social views, confidence in scientists, corporations and government have significant influence, income and regional differences do not have significant effects on public acceptance of biotechnology.Consumer/Household Economics,

    Flux tube dynamics in the dual superconductor

    Get PDF
    We study plasma oscillations in a flux tube of the dual superconductor model of 't Hooft and Mandelstam. A magnetic condensate is coupled to an electromagnetic field by its dual vector potential, and fixed electric charges set up a flux tube. An electrically charged fluid (a quark plasma) flows in the tube and screens the fixed charges via plasma oscillations. We investigate both Type I and Type II superconductors, with plasma frequencies both above and below the threshold for radiation into the Higgs vacuum. We find strong radiation of electric flux into the superconductor in all regimes, and argue that this invalidates the use of the simplest dual superconductor model for dynamical problems.Comment: 25 pages Revtex with 11 EPS figure

    CCL20/CCR6 expression profile in pancreatic cancer

    Get PDF
    CCL20 and its receptor CCR6 have been shown to play a role in the onset, development and metastatic spread of various gastrointestinal malignancies. In this study, the expression profile and clinical significance of the CCL20/CCR6 system in distinct benign, pre-malignant and malignant pancreatic tissues was investigated

    General framework for fluctuating dynamic density functional theory

    Get PDF
    We introduce a versatile bottom-up derivation of a formal theoretical framework to describe (passive) soft-matter systems out of equilibrium subject to fluctuations. We provide a unique connection between the constituent-particle dynamics of real systems and the time evolution equation of their measurable (coarse-grained) quantities, such as local density and velocity. The starting point is the full Hamiltonian description of a system of colloidal particles immersed in a fluid of identical bath particles. Then, we average out the bath via Zwanzig's projection-operator techniques and obtain the stochastic Langevin equations governing the colloidal-particle dynamics. Introducing the appropriate definition of the local number and momentum density fields yields a generalisation of the Dean-Kawasaki (DK) model, which resembles the stochastic Navier-Stokes (NS) description of a fluid. Nevertheless, the DK equation still contains all the microscopic information and, for that reason, does not represent the dynamical law of observable quantities. We address this controversial feature of the DK description by carrying out a nonequilibrium ensemble average. Adopting a natural decomposition into local-equilibrium and nonequilibrium contribution, where the former is related to a generalised version of the canonical distribution, we finally obtain the fluctuating-hydrodynamic equation governing the time-evolution of the mesoscopic density and momentum fields. Along the way, we outline the connection between the ad-hoc energy functional introduced in previous DK derivations and the free-energy functional from classical density-functional theory (DFT). The resultant equation has the structure of a dynamical DFT (DDFT) with an additional fluctuating force coming from the random interactions with the bath. We show that our fluctuating DDFT formalism corresponds to a particular version of the fluctuating NS equations, originally derived by Landau and Lifshitz. Our framework thus provides the formal apparatus for ab-initio derivations of fluctuating DDFT equations capable of describing the dynamics of soft-matter systems in and out of equilibrium. We believe that the derivation offered here represents the current state of the art in the field

    Search for gravitational wave bursts in LIGO's third science run

    Get PDF
    We report on a search for gravitational wave bursts in data from the three LIGO interferometric detectors during their third science run. The search targets subsecond bursts in the frequency range 100-1100 Hz for which no waveform model is assumed, and has a sensitivity in terms of the root-sum-square (rss) strain amplitude of hrss ~ 10^{-20} / sqrt(Hz). No gravitational wave signals were detected in the 8 days of analyzed data.Comment: 12 pages, 6 figures. Amaldi-6 conference proceedings to be published in Classical and Quantum Gravit

    Improving the sensitivity to gravitational-wave sources by modifying the input-output optics of advanced interferometers

    Get PDF
    We study frequency dependent (FD) input-output schemes for signal-recycling interferometers, the baseline design of Advanced LIGO and the current configuration of GEO 600. Complementary to a recent proposal by Harms et al. to use FD input squeezing and ordinary homodyne detection, we explore a scheme which uses ordinary squeezed vacuum, but FD readout. Both schemes, which are sub-optimal among all possible input-output schemes, provide a global noise suppression by the power squeeze factor, while being realizable by using detuned Fabry-Perot cavities as input/output filters. At high frequencies, the two schemes are shown to be equivalent, while at low frequencies our scheme gives better performance than that of Harms et al., and is nearly fully optimal. We then study the sensitivity improvement achievable by these schemes in Advanced LIGO era (with 30-m filter cavities and current estimates of filter-mirror losses and thermal noise), for neutron star binary inspirals, and for narrowband GW sources such as low-mass X-ray binaries and known radio pulsars. Optical losses are shown to be a major obstacle for the actual implementation of these techniques in Advanced LIGO. On time scales of third-generation interferometers, like EURO/LIGO-III (~2012), with kilometer-scale filter cavities, a signal-recycling interferometer with the FD readout scheme explored in this paper can have performances comparable to existing proposals. [abridged]Comment: Figs. 9 and 12 corrected; Appendix added for narrowband data analysi

    Upper limits on the strength of periodic gravitational waves from PSR J1939+2134

    Get PDF
    The first science run of the LIGO and GEO gravitational wave detectors presented the opportunity to test methods of searching for gravitational waves from known pulsars. Here we present new direct upper limits on the strength of waves from the pulsar PSR J1939+2134 using two independent analysis methods, one in the frequency domain using frequentist statistics and one in the time domain using Bayesian inference. Both methods show that the strain amplitude at Earth from this pulsar is less than a few times 102210^{-22}.Comment: 7 pages, 1 figure, to appear in the Proceedings of the 5th Edoardo Amaldi Conference on Gravitational Waves, Tirrenia, Pisa, Italy, 6-11 July 200

    Measurement of CP-violation asymmetries in D0 to Ks pi+ pi-

    Get PDF
    We report a measurement of time-integrated CP-violation asymmetries in the resonant substructure of the three-body decay D0 to Ks pi+ pi- using CDF II data corresponding to 6.0 invfb of integrated luminosity from Tevatron ppbar collisions at sqrt(s) = 1.96 TeV. The charm mesons used in this analysis come from D*+(2010) to D0 pi+ and D*-(2010) to D0bar pi-, where the production flavor of the charm meson is determined by the charge of the accompanying pion. We apply a Dalitz-amplitude analysis for the description of the dynamic decay structure and use two complementary approaches, namely a full Dalitz-plot fit employing the isobar model for the contributing resonances and a model-independent bin-by-bin comparison of the D0 and D0bar Dalitz plots. We find no CP-violation effects and measure an asymmetry of ACP = (-0.05 +- 0.57 (stat) +- 0.54 (syst))% for the overall integrated CP-violation asymmetry, consistent with the standard model prediction.Comment: 15 page
    corecore