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Abstract
We introduce a versatile bottom-upderivationof a formal theoretical framework to describe (passive)
soft-matter systems out of equilibrium subject tofluctuations.Weprovide a unique connection between
the constituent-particle dynamics of real systems and the time evolution equation of theirmeasurable
(coarse-grained)quantities, such as local density and velocity. The startingpoint is the fullHamiltonian
descriptionof a systemof colloidal particles immersed in afluid of identical bathparticles. Then,we
average out the bath via Zwanzig’s projection-operator techniques andobtain the stochastic Langevin
equations governing the colloidal-particle dynamics. Introducing the appropriate definitionof the local
number andmomentumdensityfields yields a generalisation of theDean–Kawasaki (DK)model, which
resembles the stochasticNavier–Stokes descriptionof afluid.Nevertheless, theDKequation still
contains all themicroscopic information and, for that reason, does not represent the dynamical lawof
observable quantities.We address this controversial feature of theDKdescription by carrying out a
nonequilibriumensemble average. Adopting a natural decomposition into local-equilibriumand
nonequilibriumcontribution,where the former is related to a generalised versionof the canonical
distribution,wefinally obtain thefluctuating-hydrodynamic equation governing the time-evolutionof
themesoscopic density andmomentumfields. Along theway,weoutline the connectionbetween the
ad hoc energy functional introduced inpreviousDKderivations and the free-energy functional from
classical density-functional theory. The resultant equationhas the structure of a dynamical density-
functional theory (DDFT)with an additionalfluctuating force coming from the random interactions
with the bath.We show that ourfluctuatingDDFT formalism corresponds to a particular version of the
fluctuatingNavier–Stokes equations, originally derived byLandau andLifshitz.Our framework thus
provides the formal apparatus forab initioderivations offluctuatingDDFT equations capable of
describing thedynamics of soft-matter systems in and out of equilibrium.

1. Introduction

Classical fluids can be categorised into two generic classes: simple (atomic-molecular)fluidswhere the particles
are the atoms-molecules themselves, hence of nanometer size, and colloidal fluidswith particles ofμmsize
suspended in a simple fluid bathmade ofmuch smaller and lighter particles, namely atoms or smallmolecules
[1]. Colloidal fluids are of theoretical interest, but they are also ubiquitous inmany everydaymaterials, e.g. tea,
milk, detergents, lubricants and paints, to name just a few [2]. Due to themass separation between the bath and
colloidal particles, suchfluids exhibit intricate dynamics with awide range of interrelated timescales. This leads
to significant challenges in both theoretical and computationalmodelling [3–5]. Over the last few decades,
significant theoretical work has been devoted to approximating the dynamics of colloidal fluids by coarse
graining the full Newtonian description of both bath and colloidal particles to obtain appropriate reduced
models [6–16]. The ultimate goal underlying thesemodels is to judiciously eliminate the enormous number of
degrees of freedom (DoF) related to the bath particles, traditionally via projection-operator techniques, which
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essentially average over the bath dynamics to obtain the effective dynamics of the colloidal particles. As a
consequence of this coarse graining, the resultant time-evolution equations for the colloidal-particle DoF are no
longer deterministic but random. These stochastic time-evolution equations describing the dynamics of the
colloidal particles arewidely known as the Langevin equations (LEs) [17].Whilst the LEswere initially proposed
heuristically to describe Brownianmotion observed in nature, and restricted to non-interacting and spherically-
symmetric particles immersed in afluid bath [18], they have been formally justified and generalised to describe a
wide spectrumof colloidal fluids [7, 11, 19, 20].

The theoretical description of such fluids involves at least one LE per particle, with the total number of
particles,N, being approximately of the order of Avogadro’s number. Thismakes the LE formalism intractable
from a computational point of view as also discussed in [4, 5]. A typical approach to circumvent such a difficulty
consists in transforming the systemof LEs to an equivalent time-evolution equation for the probability density
function (PDF), which is commonly known as the Fokker–Planck equation (FPE). For theN-particle system
under consideration, a standard procedure in statisticalmechanics is to average the FPE over -( )N 1 particles
which gives rise to the evolution equation of the one-body density [21, 22]. In general, themean-field dynamics
obtained for the one-body distribution consists of a continuity equation for the local density and a conservation
law for themomentumdensity, which is now a functional of the density [22]. The exact expression for the
functional relating themomentumdensity and the local density is generally unknown, although it can be
approximated via physical arguments. In particular, for systemswith strong dissipation due to the bath, it can be
argued that the functional can bewritten in terms of the free-energy functional of a systemwith the same density
at equilibrium. This is convenient not only because such a functional has been extensively studied in the
statisticalmechanics of classical fluids [21, 22], but also because it ensures that the resultant equation reduces to
the corresponding equilibriumdensity functional theory (DFT) [4, 5]. That is why thismean-field equation is
called dynamical DFT (DDFT), as it extends the original equilibriumDFT to describe the dynamics of simple
andmore general colloidal fluids out of equilibrium [4, 5, 11, 23–25, 26, 27, 28–30].

TheDDFT framework has been shown to successfullymodel awide variety of phenomena, fromhard rod
and hard sphere systems [5], mixtures [31], to the calculation of the vanHove distribution function for
Brownian hard spheres [32] and even crystallisation [33]. Nevertheless, DDFT itself has no inherent capability of
describing processes governed by fluctuations since they are averaged out during the derivation from the LE.
And simply adding an additional noise term (as for instance in the study by Elder et al [34]) to e.g. cross energy
barriers and study homogeneous nucleation, raises questions in relation to the physical interpretation of this
noise becausefluctuations have already been included in the theorywhich is ‘meanfield’ by the one-body density
(which can also be seen as the probability tofind a particle at a certain position). It is for this reason that it is
generally thought thatDDFT and noise effects are incompatible, a debate that remains vivid aswas also pointed
out by Archer andRauscher [35]. Yet, fluctuations are crucial inwide-ranging and important phenomena such
as nucleation in phase transitions and other barrier-crossing processes, e.g. diffusion in solids, chemical
reactions or transport in biological systems. In addition, systems are rather susceptible to noise in the vicinity of
phase boundaries. For these reasons, afluctuating counterpart ofDDFT to describe nonequilibriumdynamics of
spherically-symmetric colloidal fluids has been derived. This is precisely what is now referred to in general as
fluctuating hydrodynamics (FH).

Thefirst derivations of FH go back to the early works of Landau et al [36]. This derivation, however, was
mostly phenomenological. Landau et al [36] simply added thefluctuating fluxes to the usual hydrodynamic
equations and, also, thefluctuation-dissipation theorem (which relates time-correlation functions to transport
coefficients)was assumed to hold even out of equilibrium. Follow-up studies have focused on deriving
rigorously the Landau–Lifshitzfluctuation formalism, initiated by theworks of Bixon andZwanzig [37], Fox and
Uhlenbeck [38] andMashiyama andMori [39]. But, it was not until the appearance of theworks ofMunakata
[40], Kawasaki [41] andDean [42] that FHwas interpreted as afluctuatingDDFT (so-called ‘Dean–Kawasaki
model’), with a heuristic energy functional. Nevertheless theDean–Kawasaki (DK)model describes the
evolution of the instantaneousmicroscopic densityfield, and thus contains the same physical information as the
set of LEs [28]. Therefore, theDKmodel cannot be understood as amodel equation for the evolution of the
observablefields. One could argue that either averaging over amesoscopic temporal window or by averaging
over spatially-finite domains, theDK equation can be transformed into the fluctuating time-evolution equation
of a coarse-grained density, and hence can be seen as aDDFTwith fluctuations [24]. Nevertheless, these
averagingmethods require the use of typical time scales or experimental resolution kernels, which depend on the
properties of the particular systemunder consideration, to define the coarse-grained density. Hence, there is still
a need of formalising the connection betweenDKand FH fromfirst principles to describe the evolution of
observablefields and remove the dependence on themicroscopic LEs. Also, the effects of local angular velocity
have not been taken into account in suchmethodologies. Yet, the orientational DoF play a crucial role in the
behaviour of systems of nonspherical particles [11, 29, 30], which often exhibit complex phase diagrams and
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associated phase transions [43, 44]. To describe the dynamics of these fluids and their phase transitionswe
require amean-field nonequilibrium formalism analogous to that previously developed for point-like particles.

While the authors already generalisedDDFT to include the effects of asymmetric particles [11], the
incorporation offluctuations in a self-consistent way requires a different ab-initio approach. Specifically, in this
workwe start with theHamiltonian description of the system and connect with theDKmodel by introducing
the definition of themicroscopic fields. Bymaking this connection, wewill highlight againwhy the original DK
equation still depends on allmicroscopicDoF. Then, we show that carrying out an ensemble average over a
general nonequilibriumdistribution, the dynamics for themicroscopic density andmomentum fields governed
by theDK equation can be transformed into afluctuatingDDFT for themesoscopic quantities that are
experimentally observed. This ensemble average allows us to avoid the phenomenological temporal or spatial
coarse-graining techniquesmentioned above. The nonequilibriumdistribution needed for that purpose is
decomposed into a local-equilibrium and a purely nonequilibrium contribution, the latter only contributing to
high-ordermoments such as the stress tensor or the heatflux [5, 11]. Along theway, we show that the free-
energy functional appearing in the resultingmesoscopic fluctuatingDDFT exhibits the properties of the
thermodynamic free-energy functional from classical DFT [21, 22]. This, in some sense, supports the current
state-of-the-artmodus operandi, namely interpreting the energy functional ofDKdescriptions as theHelmholtz
free-energy functional.More crucially, ourwork provides a formal and alternative answer to the question on
whetherDDFT is stochastic or deterministic [24].

In section 2, we rederive the LEs for a systemof general colloidal particles [11].We also define the
microscopic local number andmomentumdensity fields which allows us to rewrite the LEs in amuchmore
compact way. Section 3 is devoted to deriving a closedmicroscopic FH equation (FHE)which only depends on
thefields previously defined. To get an equation for the coarse-grained density, themicroscopic FHE is
integrated over afinite-time interval under the assumption of strong dissipation due to the thermal bath. The
integration produces a generalisedDKequationwhich now exhibits an unavoidable coupling between the
translational and rotational DoF. Finally, section 4 introduces an alternative coarse grainingmethod by
averaging over a nonequilibriumdistribution function consisting of a local-equilibrium and a purely
nonequilibrium contribution.With this nonequilibrium ensemble averagewe obtain an underdamped FHE
which shows exactly the same structure as theDDFT [11] butwith an additional noise term. After taking the
limit of strong damping, themesoscopic FHE obtained before reduces in structure to the generalisedDKmodel,
with a subtle difference in the definition of the free-energy functional involved. Finally, we introduce aflow
diagram to summarise our derivation and the relationshipwith previous approaches infigure 1. Concluding
remarks, implications of our results and a discussion of open problems are offered in section 5.

2.Microscopic description

2.1.Hamilton’s and Liouville’s equations
In themost general scenario, the dynamical state of a systemof particles is determined by the generalised
coordinates andmomenta of the constituent particles. A colloidal suspension can be considered as a systemofN
identical, arbitrarily shaped colloidal particles withmassm immersed in afluid of n N bath particles with
massmb. In the absence ofmechanical constraints [45], the configuration of the particles is defined by the
position vectors locating the centre ofmass of each particle and the rotational DoF to describe the particle
orientationwith respect to a space-fixed coordinate system. Assuming a canonical bath of point-like (non-
orientable) particles, the dynamics of a bath particle is uniquely determined by its translational DoF and their
conjugate (linear)momenta, = ( )x r p,i i

b
i
b . The configuration state of a colloidal particle is, however,

determined not only by the translational DoF and its linearmomentum, = ( )X r p,i i i , but also by the rotational
DoF, e.g. the Eulerian anglesa q f c= ( ), ,i i i i defined using the ¢ ZY Z convention [7, 45, 46], which determine
the orientation of the principal-axes frame of the particles,B, relative to the space-fixed frame,S. Thus, the
dynamics of the colloidal particles will be determined by the evolution of a pW = ( ),i i i , with pi being the
rotational conjugatemomenta [8], whose relationshipwith the angularmomenta Li will be specified below.We
know that  w=Li i i with wi the angular velocity and i the inertial tensor. This tensor is diagonal with respect to
B, such that  = = ( )I I Idiag , ,i 1 2 3 . The transformation between the framesB andS is given by the rotation
operatori, such that = ¢x xi where Î Bx and ¢ Î Sx [46]. In the principal-axes frame,

w a a aF L= =( ) ˙ ( ) ˙i i i i i i, where the dot denotes time derivative,Fi highlights the fact that wi is the vector
accounting for the rate of change of angular displacement over theCartesian frameB [7, 46], andLi can be
found elsewhere [11, 46]. Accordingly, w w aX¢ = = ˙i i i i i under the space-fixed frame, with  X L=i i i .
Hence w w= ¢i i i , with w¢i the angular velocity inS, and   ¢ =i i i, which is neither diagonal nor
constant.
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The Lagrangian of the system, , can nowbe expressed as the sumof two terms:
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with b and B referring to the bath andBrownian (colloidal) contribution, respectively, a( )V r ,N N being the
potential energy due to short-range interactions exclusively between colloidal particles, and

 åa a= +
m

m m m
=

( ) ( ) ( ) ( )uUr r r r r, , , , , 2b
n N N

b
n

N

b
n

1

the short-range intermolecular potential energy coming from the interaction between bath particles, ( )U rb
n , and

the interaction of each colloidal particle with thewhole bath, m m( )u r r,b
n , for all m = ¼ N1, , . Note thatwe have

used the compact notation = ( )r r r...b
n b

n
b

1 , = ( )r r r...N
N1 anda a a= ( )...N

N1 for the sake of convenience.
From classicalmechanics, we obtain the conjugatemomenta:
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Thus, p aX X L= ¢ =( ) ˙ Li i i i i i i [7, 47], which allows us to construct theHamiltonian function of the system,

  å åa p p aX X= + + + ¢ +
= =
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⎝

⎞
⎠

·
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Figure 1. Flow diagramof the approaches used to obtain the FH formalism from the full underlying dynamics. Arrows indicate the
interconnectedness of the different approaches. Black boxes/arrows: this work. Blue boxes/arrows: previous approaches. Thick
boxes:main results of this work. Dashed boxes/arrows: heuristic routes. Text on arrows give brief descriptions of the
approximations/manipulationsmade.
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so that the dynamics of the particles is uniquely defined byHamilton’s equations:
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and the initial conditions for positions andmomenta of the bath and colloidal particles. However, the lack of
information about the initial conditions turns this classical (deterministic) problem into a stochastic one, where
whatever initial configuration compatible with the total energy of the system is assumed equally probable. Thus,
at a given time t, the probability offinding the systemwith phase-space coordinates

WG =( ) ( ( ) ( ) ( ))t t t tx X, ,n N N is determined by the n+N particle distribution  G+ ( )( ) t;n N . According to
Liouville’s theorem, such a distributionwill evolve according to [48]

 ¶ G + G =+ +( ) ( ) ( )( ) ( )Lt t; i ; 0 6t
n N n N

with the Liouvillian,L, being the sumof the following operators:
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where = - + åm m
¶
¶ =( )uUfi

N

r 1
i
b and = - +¶

¶
( )uVFi iri

are the instantaneous forces acting on bath and

colloidal particles, respectively. Aswe are only interested in the dynamics of the colloidal particles, we need to
average out the bath-particle DoF to obtain the dynamics of the reducedN particle distribution. But, before
applying such a ‘projection’ on the Liouville equation (6), wewant to perform a change of variables to express the
dynamics of the arbitrarily shaped colloidal particles in terms ofmore convenient quantities, namely the angular
velocities andmomenta wi and Li, respectively. The probability distribution in terms of the newphase-space

coordinates WG =
~( ) ( ( ) ( ) ( ))t t t tx X, ,n N N

, with aW =
~( ) ( )t L,N N , is given by the transformation law:
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With this, equation (6) can be transformed into an equivalent equation for G+ ( )( )F t;n N ,
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Also, w= - ´T N Li i i i represents the net torque acting on a given colloidal particle, with

a a
F
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n
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the torque due to intermolecular interactions along the principal axes of inertia of the ith particle. Inserting the
definitions = ( )m m1diag , , F= ( )r r ,i i i , = ( )p p L,i i i , l=p pi i, withl = -m 1 2, and = ( )f F T,i i i , along

with the operators
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and
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, we can eventually rewrite equation (9) as,
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Now,we can use Zwanzig’s projection technique to get the time-evolution equation for theN-particle
distribution

ò= +( ) ( ) ( )( ) ( )f t F txd , 14N n n N

fromLiouville’s equation [10–12, 15, 16]. For this purpose we define the projector operator over the fast phase-
space variables (i.e. the bath phase-space coordinates [15])

 òrG = G+ +ˆ ( ) ( ) ( ) ( )( ) † ( )F t F tx x; d ; , 15n N
n

n n n N

with r†
n the equilibriumdistribution of the bath particles in the instantaneous potential created by the colloidal

particles. Thus, projecting Liouville’s equation on the fast variables, taking the limit ofmassive colloidal particles
(by lettingl  0), and after considerable algebraicmanipulations [11], we reach the time-evolution equation
wewere after:
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Here kB is the Boltzmann constant andT the temperature imposed by the bath, = á ñ†F f denotes the solvent-
averaged forces and torques, i.e.

ò ar= ( ) ( ) ( )†F fx x r rd , , 17i
n

n
n

i b
n N N

with á ñ†. representing the average over the fast variables, and

òbG
G G

G G
= = á Ä - - ñ-

¥⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( ) ( ( ) ) ( )†r m f f Fs t t sd . 18ij

N ij
TT

ij
TR

ij
RT

ij
RR i j j

1

0

where Gmn
ij , m n Î { }T R, , , are the translational–rotational friction tensors, where b = k T1 B .Wemay

decompose the friction tensors as g d gG G= +mn
mn mn

mn1ij ij ij , so that

dG ¡ ¡= +
~ ( ), 19ij ij ij

with the 6×6 tensor g¡ = mn( )1 , where gmn is the constant friction coefficient for an isolated particle and

g¡ G=
~

mn
mn( )ij ij , where Gmn

ij are the translational–rotational hydrodynamic-interaction (HI) tensors. For the
particular case of spheres far fromwalls, the components of the friction tensor are g ph= R m6T 0 and
g ph ph= =R I R m8 20R 0

3
0 , whereas themixed translational and rotational components vanish.HereR0 is

the radius of the colloidal particles and η is the dynamic viscosity [19].

2.2. Generalised LEs
The FPEwe have just derived for arbitrarily shaped colloidal particles immersed in a bath, equation (16), can be
transformed into a set of stochastic differential equations describing the temporal evolution of their dynamical
variables [11, 17]

å å xG

=

= - +

-

= =

˙ ( ) ( )

˙ ( ) ( ) ( ) ( )

r m p

p F r p

t t

t tA , 20

i i

i i
j

N

ij
N

j
j

N

ij j

1

1 1

where x = ( )f t,j j j is a six-dimensional Gaussianwhite noise representing the random forces, f j, and torques,

tj, acting upon the jth particle, such that xá ñ =( )t 0j
a and x x d d dá ¢ ñ = - ¢( ) ( ) ( )t t t t2j

a
k
b

jk
ab , where á ñ. refers to

the average over an ensemble of thewhite-noise realisations. The strength of these random forces and torques is
given by the tensor Ajk which obeys thefluctuation-dissipation relation,

åG =
=

( ) ( ) ( ) ( )m r r rk T A A . 21jk
N

l

N

jl
N

kl
N

B
1

Equation (20) represents the amalgamation of the translational and rotational LEs for a systemof colloidal
particles subject toHIs due to the bath. In some practical cases, however, theHIs due to the bath can be
neglected.Hence, the stochastic dynamics of the colloidal particles is given by the LEs
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, 22

i i
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1

recalling that   = - - - ´
F

¶
¶

¶
¶

-( ( ) )F L L,i i ir
1

i i
, where ( )rN is the solvent-averaged interaction-potential of

mean force [50] that will be assumed to be of the form

 å å= -
= = ¹

( ) ( ) ( )r r rV
1

2
. 23N

i

N

j j i

N

i j
1 1,

For simplicity, we assume that the system is in a very large container, so that the confining (external) potential
( )rV1 modelling thewall-particle interactions is zero inside the container and infinite outside. In these conditions

the surface effects of the container can be considered negligible.
Our goal in this section is to derive the LEs for themicroscopic number andmomentumdensity fields

år d= -
=

ˆ ( ) ( ) ( )r r rt; , 24
i

N

i
1

å d= -
=

ˆ ( ) ( ) ( )j r p r rt; , 25
i

N

i i
1

where ºˆ ( ˆ ˆ )j j j,T R , with d= å -=
ˆ ( ) ( )r r rtj p;T i

N
i i1 and d= å -=

ˆ ( ) ( )r r rtj L;R i
N

i i1 are the translational
and angular (i.e. rotational)momentumdensity, respectively. Computing the time derivative of equations (24)
and (25), and using equation (22), will result in a set of unclosed nonlinear stochastic equations that we refer to as
generalised LEs. These constitute the starting point of any bottom-up derivation of the FH framework.

First, we can derive the time-evolution equation for the density fieldwhich results in the continuity
equation,

r ¶ = - -ˆ ( ) · ( ˆ ( )) ( )r m j rrt t; ; , 26t
1

wherewe used the definition of ĵ, given in equation (25). In a similar way, the time-evolution equation for the
momentumdensity field can be obtained,

å å hd d ¡¶
¶

= - Ä - + - - +
=

-

=

ˆ ( ) · ( ) ( ) ( ) ˆ ( ) ( ) ( )j r m p p r r F r r j r rr
t

t t t; ; ; , 27
i

N

i i i
i

N

i i
1

1

1

wherewe have defined the local randomfluctuations as

åh xd¡= -
=

( ) ( ) ( ) ( )r m r rt k T t; . 28
i

N

i i
1

B

Wenote that the noise termhere can be rewritten in amuchmore useful way (as will bemade apparent later). It
is known that any noise with the structure shown in equation (28) can be rewritten (without changing the
statistical properties) as long as the autocorrelation of the noise remains unchanged [51]. Hence, we can rewrite
the localfluctuation term as [42]

h xr¡=( ) ˆ ( ) ( ) ( )r m r rt k T t t; ; ; , 29B

with x being a spatiotemporal Gaussianwhite noise satisfying x x d dá ¢ ¢ ñ = - ¢ - ¢( ) ( ) ( ) ( )r r r rt t t t 1; ; 2 . Note
that, hereinafter, wewill interpret thefluctuations in the Itô sense, unless specified otherwise.

At this point, we need to discuss the stochasticity present in equations (26) and (27), the building blocks of
the FH formalism, eithermicroscopic,mesoscopic ormacroscopic. Themost evident source of randomness is
due to the interaction between the particles under study and the constituent particles of the bath. Indeed, these
unpredictable collisions result in the noise term appearing in equation (27). The second source of stochasticity is,
however,more subtle. The equations derived so far can be understood as a convenient rewriting of the original
LEs, which describe a unique trajectory in the phase space, G =( ) { }r pt ,i i

N
1 , provided an initial condition at

some earlier time, e.g. t=0.However, formost practical purposes, we are not interested in following a single
trajectory but an average over an ensemble of them. This ensemble can be readily determined in equilibrium,
sincewe know its (canonical) distribution.Out of equilibrium, in general, the distribution representing the
ensemble of systemswill be time-dependent and one has to specify the ensemble at a given time, e.g. a
distribution of initial conditions. If wewant to study such an ensemble averagewemust carry out the following
two steps [52]. First, we specify the values of the fluctuating forces and torques acting on the particles at any time.
Second, such a fixed set of values can be considered as an externalfield acting on the colloidal particles andwe
can proceedwith the average over an ensemble of initial conditions which gives rise to amesoscopic FHE. Finally,
if one is interested in amacroscopic picture, an average over the noise could be performed to obtain the (the
expected)macroscopic FHE.Nevertheless, in a general non-equilibrium scenario, the expected dynamics
resulting from sampling all possible realisations of the noise does not have to coincide with themost-likely one.
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Indeed, our interest is obtaining the equationwhich governs themost likely path, i.e. the dynamics that ismost
likely to be observed, representing themaximumof the corresponding probability. For this purpose, one needs
to derive the path probability associatedwith themesoscopic FHE and, then, obtain themost likely dynamics. As
wewill discuss at the end of section 4, in the case of weak noise (i.e. when the deterministicfluxes govern the
dynamics) themost-likely-path dynamics recovers previousDDFT equations. This should clarify the
connection betweenDDFT andmesoscopic FH,with the former constituting the evolution law of themost-
likely path obtained from the latter in theweak-noise limit (WNL). To set the notation, the FHEobtainedwhen
following individual trajectories, i.e. without performing any average, will be called themicroscopic FHE inwhat
follows.

3.Microscopic FH: generalising theDean–Kawasakimodel

In this section, we introduce the kinetic and internal energy functionals. Thismakes it possible to cast the
generalised LEs (equation (27)) in a form resembling hydrodynamic equations, with an additional fluctuating
term. It is noteworthy that these equations are oftenmisleadingly referred to as the FHE for colloids.
Nevertheless, as we discuss below, such equations still contain all themicroscopic details, which is whywe refer
to them as themicroscopic FHE. The following derivation reviews and generalises the Kawasakimodel [41, 53] to
describe general colloids. This generalisation can later be integrated over a finite time interval, yielding a time-
evolution equation for the coarse-grained (and, hence,mesoscopic) density. At the end of this section, we show
that the coarse-grained evolution equation exhibits the same general structure asDean’s equation [42], the
overdamped counterpart of Kawasaki’s equation. This result, however, represents a generalisation ofDean’s
original equation, whichwas derived for themicroscopic density and not for a coarse-grained density [42].

In order to obtain a closed equation that depends only on the number andmomentumdensity fields, r̂ ( )r t;

and ˆ ( )j r t; , we need to deal with thefirst and second termon the right-hand side of equation (27).We start with
the term that involves the potential part of Fi, which can be easily rewritten as

 òå d r r - = ¢ - ¢ ¢
=

( ) ( ) ˆ ( ) ( ) ˆ ( ) ( )r r r r r r r rr rt V t; d ; . 30
i

N
N

i
1

i

Next, the term involving the dyadic product can also be rewritten by using that

å
å å

d
d d
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-
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r
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t
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;
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;
. 31

i

N

i i i
i

N

j

N
i i i j

1

1 1 1
1

1

This same argument can be applied to the part of the second term in equation (27) that involves the intrinsic
torques, giving

 
å d

r
= - ´ - = -

´

=

-
-

( ) ( ) ( )
( ˆ ( )) ˆ ( )

ˆ ( )
( )r r r

r r

r
t

t t

t
T L L

j j
;

; ;

;
, 32m

i

N

i i i
R R

1

1
1

where ( )r tT ;m stands for the themicroscopic torquefield. For the sake of convenience, we introduce the
definition =ˆ ( ) ( ( ))r rt tT 0 T; , ;m that will be useful below.

Note that equations (31) and (32) are not completelymathematically rigorous unless theDirac delta function
is understood in amore physical sense. Such an interpretation relies on the assumption that we can discretise the
phase space intofinite cells, small enough such that nomore than one particle can occupy the same spatial cell.
Under such circumstances, theDirac delta function can be understood in terms of aKronecker delta divided by
the volume of a cell. This is a reliable approximation if we are considering systems of interacting particles with a
repulsive hard core. Amore detailed discussion of how to discretise the phase space can be found elsewhere [53].
Wewillmake use of this interpretation inwhat follows onlywhen there is no otherway to get a clear connection
with awell-known expression or term. For instance, it was necessary above to rewrite thefirst term in
equation (27) in the sameway as the kinetic stress tensor of classical (mesoscopic) FH [36].
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Substituting equations (29)–(32) into thefluctuatingmomentum-moment equation (27) gives

ò
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r r
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t

1

B

where the terms in the right-hand-side have beenwritten to emphasise the connectionwith those appearing in
classical conservation laws for both the linear and angularmomenta [54]. Thefirst (and nonlinear) term can be
identifiedwith the kinetic stress tensor. The second and third terms correspond to the body forces acting on the
systemof particles. Finally, the last two terms describe the bath forces acting on the particles, with the first
representing the dissipation and the second the fluctuation. Inserting the definition of the kinetic and internal
energy functionals

 òp p
f

f
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2
d , 34K

2
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d d , 35U

equation (33) can be rewritten as
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; ; . 36

t
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1

B

In the absence of a thermal bath, i.e. with¡ = 0, equations (26) and (36) are the canonical equations for the
deterministic number andmomentumfields. In fact, in the canonical situation, theHamiltonian of the system
  r r r= +[ ˆ ˆ] [ ˆ] [ ˆ]j j, ,U K is conserved and corresponds to the total energy.

Consider now the PDF for observing a given configuration r{ˆ ˆ}j, at time t,

r d r r d= á - - ñ([ ˆ ˆ] ) [ ˆ ] [ ˆ ] ( )j j jf t, ; 37t t

with the average á ñ. carried out over x{ ( )}r rt; and the delta functional defined by

d r r d d r r d- - = - -[ ˆ ] [ ˆ ] [ ( ) ˆ ( )] [ ( ) ˆ ( )] ( )j j r r j r j r
r

t t; ; . 38t t

The time-evolution equation governing the dynamics of r([ ˆ ˆ] )jf t, ; can be formally derived by following
standard arguments [41, 53]. Such an equation has the structure of an FPE and it has been presented elsewhere
for spherical particles [25, 41, 53]. The functional FPE is out of the scope of the present study, but it is worth
mentioning that there exists a stationary solution given by

 r b r= --[ ] ( [ ]) ( )j jf , exp , , 39eq
1

which is afield representation of the canonical Gibbs distribution, with b = k T1 B and  the canonical
partition function. This is the reason for introducing the energy functionals in equations (34) and (35): they
make it possible to understand themicroscopic FHEs (26) and (33) for thefields as the dynamics associatedwith
the canonical ensemble. In that sense, it is not surprising to see that theHamiltonian function involved so far
does not include any entropic contribution, unlike in themesoscopic case. This is due to the fact that
equation (33) describes the exact dynamics of a givenmicrostate in the phase space, i.e. a unique trajectory in the
space, r{ˆ ( ) ˆ ( )}r j r, . It is only after coarse graining the description that some information is lost, whichwill
finally produce the typical entropic contribution r r( ) ( )r rlog . Remarkably, the structure of the entropic
contributionwill turn out to be the same if we coarse grain the evolution of the density field (as usually done to
study the overdamped limit [53]) or the general formalism (by averaging the FHEswith some nonequilibrium
distribution), as discussed in section 4.

3.1. GeneralisedDean equation for the coarse-grained density
Inmany physical situations, colloidal fluids are subject to strong dissipation due to the bath. This allows a
substantial simplification of the formalismdeveloped above, eventually yielding a time-evolution equation for
themicroscopic density field r̂ ( )t . In the strong damping limit, the density field relaxesmuch slower than the
momentumdensity, which relaxes on a typical time scale t ¡= - - m 01 1 . Hence, the unsteady

acceleration vanishes rapidly so that ¶ ˆ ( )j r t 0;t for t>t . Under such circumstances, it is customary to
integrate the evolution equations (26) and (33) over a (mesoscopic) time interval + D[ ]t t t, with t D t 0
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and then take the continuous limitD t 0 tofinally get the evolution equation for the coarse-grained density
field [53]
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wherewe define

r r= = D = ¼
t D 

 ( ) ˆ ( ) ( ) ( )r rt t t n t n; lim ; , 1, 2, . 41n
t

n n
0

Here z ¡= m and  r r r= +
~[ ] [ ] [ ]U id , where òr r r= -[ ] ( )( ( ( )) )r r rk T d log 1id B resembles the

ideal-gas contribution to the free energy function in classical DFT. For systems of smooth spherical particles,
where the friction tensor¡ reduces to the translational component, we recover theDean–Kawasakimodel5

[41, 42, 55]. However, the strength of the rotational–translational coupling increases rapidly as the distance of
the particles from awall decreases [11, 19, 56]. For that reason, such a couplingmust be taken into account near
walls even for the spherically-symmetric case, whichmakes equation (40) an indispensable generalisation of the
state of the art.

When the number of colloidal particles is sufficiently low (the so-calledweak-solution limit)we find that
 r r
~  [ ] [ ]id , so that the generalisedDean–Kawasaki equation (40) becomes,

z z xr r r  ¶ +- -  ( ) · ( ( )) · ( ) ( ) ( )r r r rr r rt k T t k T t t; ; ; ; 42t B
1

B
1

which is a generalised diffusion equationwith noise.Here, we naturally identify z= -k TD B
1 as the diffusion

tensor, which fulfils the generalised Einstein relationships [11, 19, 49]

z z z z

z z z z z z z z z z

z z z z z z z z z z
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1
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1
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1
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1

RT TT
1

TR RR RT
1

TT
1

RR RR RT TT
1

TR
1

In the special case when the translational and rotationalmotions are fully decoupled, = ºD D 0TR RT ,
equation (42) exhibits the classical Laplacian structure for the drift term.

4.MesoscopicfluctuatingDDFT: beyondDean–Kawasaki

Inwhat followswe derive the dynamical law of the relevant observable quantities for a general colloidal fluid in
contact with a thermal bath. These are the continuum fields accounting for the local density andmomentum,
which can be understood as the ensemble averages of the correspondingmicroscopic fields introduced before.
While the fluctuating equation (36) governing themicroscopic fields is quite appealing, it is not useful for
describing the observablemomenta of the colloidal fluid, since it still depends on all positions andmomenta of
the constituent particles. Recall that the fields given by equations (24) and (25) are sums ofDirac’s deltas,
implicitly involving all positions andmomenta. Indeed, equation (36) can be seen just as amore convenient
representation of the original LEs (22). However,more often than not, themicroscopic FHE is heuristically used
as the dynamical law governing the temporal evolution of themesoscopic fields describing the sate of the system.
Herewe introduce the formal step required to get amesoscopic FHdescription by carrying out an ensemble
average of the generalisedDK equation. Such a procedure allows us to introduce a proper free-energy functional
that will be shown to exhibit the same properties as the equilibrium energy functional ofDFT [21, 22].
Eventually, thismakes possible to connect our result with theDDFT formalism. The schematic infigure 1 offers
a diagrammatic representation of thewhole derivation and the possible connections of our frameworkwith
previous FH equations.

First of all, we need to introduce a nonequilibriumdistribution, G( )f t; , to describe the nonequilibrium
ensemble under consideration.With this, the localmesoscopic density andmean velocity are defined by

5
It is worthmentioning thatDean’s original derivation of equation (40) does not involve themesoscopic coarse-grained density r but the

microscopic density r̂. Indeed,Dean’s equation results from the use of Itôʼs lemma [51] on r̂, which is a function of all particles’ positions
evolving according to LEs.
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Consider the decomposition G = G + G( ) ( ) ( )f t f t f t; ; ;leq neq , taking into account both local-equilibrium and
nonequilibrium effects. Thefirst term represents a regime inwhich the systemhas reached a local-equilibrium
state. In this scenario the probability distribution can be constructed using the equilibrium canonical
distribution
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by referring the linear and angularmomenta to a comoving reference framewith local velocity ( )v r t; , inwhich
thefluid seems to be at rest. The local-equilibriumdistribution is given by equation (45)with the substitution

¢ = - ( )p p p mv r t;i i i [5, 11, 48, 57, 58], and  bG¢ = - G¢-( ) ( ( ))f t H; expleq
1 , with the prime symbol

indicating the comoving reference frame, the local-equilibrium linear and angularmomenta defined by

= á ñ( ) ˆ ( ) ( )j r j rt t; ; 46leq leq

and r r¢ =ˆ ( ) ˆ ( )r rt t; ; . On the other hand, the nonequilibrium termmust satisfy:
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; 0 . 47N

neq

Using equations (47) and (46) it is readily found that r= =( ) ( ) ( ) ( )j r j r mv r rt t t t; ; ; ;leq , since fneq only
contributes to highermoments, such as the kinetic stress tensor, or the local torque density.

Applying now á ñ = á ñ + á ñ. . .leq neq on both sides of equations (26) and (27) yields the desired FHE for the
coarse-grained fields r ( )r t; and ( )j r t; . Startingwith the continuity equationwe get its coarse-grained
counterpart,

r ¶ + =-( ) · ( ( )) ( )r m j rrt t; ; 0. 48t
1

Continuingwith themomentum equation (27)we get,
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Using the properties of the canonical distributionwe can rewrite the second and third termon the left-hand side
of the latter equation in amore convenient way. First,

å d r   PÄ - = +
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wherewe have introduced the definition of the kinetic stress tensor:
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1

1

neq

P P= +( ) ( ) ( )r rt t; ; 52leq neq

with thefirst term embodying the local-equilibrium stress due to translational, rotational and coupled velocities.
Second,

òå d r r- - = ¢ - ¢ á ¢ ñ -
=

( ) ( ) ˆ ( ) ˆ ( ) ( ) ( )F r r r r r r r T rrV t t td ; ; ; , 53
i

N

i i
1

leq

where = á ñ( ) ˆ ( )T r rt tT; ; neq is the non-inertial local torque, which vanishes in the local-equilibrium limit. To
close the derivation, we shall define the functional:

 òr r r r= L - +[ ( )] ( )( ( ( )) ) [ ( )] ( )r r r r rt k T t t t; d ; log ; 1 ; 54B
3

exc

withΛ being the de Broglie wavelength (whichwill turn out to be irrelevant) and  r[ ( )]r t;exc satisfying the
relationship,
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 d r
dr

d r
dr

=
[ ]

( )
[ ˆ ]

ˆ ( )
( )

r rt t; ;
. 55Uexc

leq

It can be shown that the functional derivative of  r[ ] fulfils,


òr
d r
dr

r r  = + ¢ - ¢ ¢( ) [ ]
( )

( ) ( ) ( ) ( )( )r
r

r r r r r rr r rt
t

k T t V t;
;

; d , ; , 56B
2

wherewe introduced the definition r r r¢ = á ¢ ñ( ) ˆ ( ) ˆ ( )( ) r r r rt t t, ; ; ;2
leq. In particular, if the averages are taken at

equilibrium, equation (56) recovers thefirst equation of the Yvon–Born–Green hierarchy [48, 59], as reported in
previous derivations ofDDFT [4, 5, 11]. For this reason, the functional  r[ ] can be identified as the classical
Helmholtz free-energy functional [21, 22]where the first termon the right-hand side of equation (54) accounts
for the ideal gas contribution and the last one is the excess over-ideal term containing the contribution due to
interactions. Upon substitution of equations (50)–(56) into (49), and using equation (48), themesoscopic
fluctuatingDDFT equation isfinally obtained,

 x

r

r
d r
dr

r



 P

 ¡ ¡

¶ + =

¶ + -

+ = - +

-( ) · ( ( ))
( ) · ( )

( ) [ ]
( )

( ) ( ) ( ) ( )

r m j r

j r T r

r
r

j r m r r

r

r

r

t t

t t

t
t

t k T t t

; ; 0

; ;

;
;

; ; ; , 57

t

t

1

B

which constitutes themain result of this work. To understand the connection between thefluctuatingDDFT
(57) and thefluctuatingNavier–Stokes (NS) equations of Landau and Lifshitz [36], we need to discuss first the
connection between local pressure and the free-energy functional. Under the local-equilibrium approximation,
the term involving the functional derivative of the free-energy functional can be related to the local pressure as
follows [22, 52],


r

d r
dr

 =( ) ( ) [ ]
( )

( )r r
r

r rp t t
t

; ;
;

, 58

by using, e.g., theGibbs–Duhem equation for an isothermal and single-component system, r m=pd d , along
with the Euler–Lagrange equation ofDFT, m d r dr= [ ] . This allows us to rewrite equation (57) as,

x

r

r



 P ¡ ¡

¶ + =

¶ + = - +

-( ) · ( ( ))
( ) · ( ) ( ) ( ) ( ) ( )
r m j r

j r r j r m r r

r

r

t t

t t t k T t t

; ; 0

; ; ; ; ; , 59

t

t

1

B

where sP P= +( ) ( ) ( )r r rt t t; ; ;leq , with s =( ) ( )r rt p t 1; ; the complete stress tensor [54]. Equation (59)
comprises indeed a generalised version of the fluctuatingNS equation for isothermal systems under local-
equilibrium conditions.What ismore, equation (57) can be transformed into (59) by inserting
s P= +( ) ( ) ( )r r rt p t t1; ; ;neq , if the relationship given in equation (58) is assumed to hold and the torqueT
is neglected. This shows that themesoscopic fluctuatingDDFTderived here is consistent with the
phenomenological FH formalism of Landau and Lifshitz. Indeed, our derivation endows the FH framework
with the originallymissing connection between themicroscopic andmesoscopic dynamics, which sheds light on
the structure and origin of the noise term, besides also generalising FH tomore realistic colloids. Figure 1 depicts
a diagrammatic representation of these connections.

One can also connect themesoscopic fluctuatingDDFTwith previousmacroscopic DDFTs for arbitrary-
shape colloids [11, 29, 30]. To do that, we consider the local-equilibrium approximation in equation (57) and
multiply it by -m 1on both sides, resulting



x

r r r
d r
dr

r r

 

¡ ¡

¶ + Ä +

= - +

-

- -

( ( ) ( )) · [( ( ) ( )) ( )] ( ) [ ]
( )

( ) ( ) ( ) ( ) ( ) ( )

r v r v r v r r m r
r

m m r v r m m r r

r rt t t t t t
t

t t k T t t

; ; ; ; ; ;
;

; ; ; ; . 60

t
1

1 1
B

Making use of equation (48) together with the identity,

r r r  Ä = +· [( ( ) ( )) ( )] ( ) · ( ( ) ( )) ( )( ( ) · ) ( ) ( )v r v r r v r v r r r v r v rr r rt t t t t t t t t; ; ; ; ; ; ; ; ; , 61

we get






x

r r

r r
d r
dr

r r





¡ ¡ ¡

¶ + =

+

+ + =

-

^
-



( ) · ( ( ) ( ))

( ) ( ) ( ) [ ]
( )

( ) ( ) ( ) ( ) ( ) ( )

r r v r

r v r m r
r

r v r m m r r

r

r

t t t

t t t
t

t t k T t t

; ; ; 0

; ; ;
;

; ; ; ; , 62

t
1

1
B

wherewe used thematerial derivative  = ¶ +( ( ) · )v r rt;t t and introduced the definitions:
g g¡ = ( )1 1diag ,TT RR , g g¡ =^ ( )1 1diag ,TR RT , and   = - -( )m madiag ,1 1 the anti-diagonal blockmatrix

with submatrices,  = -( ) m1,2
1 ,  = -( ) m2,1

1 and  = =( ) ( ) 01,1 2,2 . Interestingly, if we remove the noise
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in equation (62), we recover a special case of theDDFT equation derived byDurán-Olivencia et al [11] for
pairwise interacting particles withoutHIs.Hence, themesoscopic FHE (57), or equivalently equation (62),
provides an extension of the generalisedDDFT equation tofluctuation-driven processes, e.g. phase transitions.
Wewill come back to this point of connectingDDFTwith our FHE at the end of this section.

Finally, having developed the general framework, wewant to compare the coarse-grainedmicroscopic FHE
(40) presented in the previous sectionwith themesoscopic FH that we have just discussed. To do that we need to
take the limit of strong dissipation in equation (60) (or (62)). In this limit, as discussed before, themomentum
current will be small enough so that the quadratic termwith ( )j r t; (or ( )v r t; ) can be neglected. This
assumption considerably simplifies the equations:

 x

r

r
d r
dr

r



 ¡ ¡

¶ + =

¶ + = - +

-( ) · ( ( ))

( ) ( ) [ ]
( )

( ) ( ) ( ) ( )

r m j r

j r r
r

j r m r r

r

r

t t

t t
t

t k T t t

; ; 0

; ;
;

; ; ; . 63

t

t

1

B

Given the linearity of equation (63), we can use r ¡¶ -( )( )r mt;t
2 1 and r¶ ( )r t 1;t to eliminate themomentum.

We then neglect the second-order time derivative of the density (in agreementwith the overdamped hypothesis),
giving

z z xr r
d r
dr

r  ¶ = +- -
⎛
⎝⎜

⎞
⎠⎟( ) · ( ) [ ]

( )
· ( ( ) ( )) ( )r r

r
r rr r rt t

t
k T t t; ;

;
; ; , 64t

1
B

1

which again has the formof aDKmodel. At afirst glance, equations (40) and (64) seem to be exactly the same,
and that is true of the overall structure. However, although the ideal contribution is exactly equivalent in both
equations, the excess energy is not. The product r r ¢ ( ) ( )r rt t; ; present inside r[ ]U is not in general equal to
the pairwise distribution function shown in the expression for exc. Assuming r r= ( ) ( )r rt t; ; is equivalent to
ignoring all the correlations between particles [21, 48, 59], i.e. to imposing the crude approximation:

r r r¢ ¢( ) ( ) ( ) ( )( ) r r r rt t t, ; ; ; . 652

In short, themicroscopic andmesoscopic derivations only convergewhen the correlations between particles are
negligible. Hence, equation (40)will only represent a good approximation for nearly homogeneous states, but
fails to describemost interesting cases such as liquid–vapour interfaces, phase transitions orfluids in confined
geometries, to name a few examples, where correlations play a crucial role. Therefore, themesoscopic route
provides amore general frameworkwhere the free-energy in equation (64) includes the proper interparticle
correlations.

Aswe already pointed out for the underdamped case, if one (artificially) removes the noise in equation (64),
the overdampedDDFT equation for orientable colloids [11] (with the same definition of z ) is recovered. Indeed,
as we already discussed after deriving equation (42), we can naturally identify z= -k TD B

1 as the diffusion
tensorwhich satisfies the generalised Einstein relationships (43). In this regard, equation (64) provides a
generalisation of theDDFT equations derived by Rex et al [29] andWittkowski and Löwen [30] for systems of
orientable particles.

The formal connectionwith previousDDFT equationswould require addressing some technical issues
involving themost-likely path, as wementioned at the end of section 2. The probability for a path of the generic
SPDE [60, 61]: f f f xs¶ = +( ) [ ] [ ] ( )r rt F t; ;t , with F being a general functional andσ an operator acting on

the noise x, is given by:  òf ~ -( )[ ] texp d
T1

2 0
, with * f f= ¶ - ss -∣∣ [ ]∣∣( )Ft 1 in theWNL,with *s being

the adjoint ofσ and *ss -∣∣ ∣∣( ). 1 is theweighted norm consistent with the L2m-inner product, which is defined as

òá ñ = ( ) ( ) ( )r r r ru v m u v, d , with *ss= -( )m 1. Themost likely path is the deterministic solutionf ( )r t; that
minimises the Lagrangian . Therefore, in theWNL,we can obtain that themost-likely solution is the one
which fulfils: f f¶ =( ) [ ]r t F;t . Hence, the dynamics of themost-likely observed solution in theWNL is given
by the deterministic part of the SPDE. This formally justifies why our framework recovers previousDDFTs by
(artificially) removing the noise term, given that theDDFTswe refer to are valid in near-equilibrium conditions
where theWNL is applicable. However, it is important to highlight that themeaning of r ( )r t; and ( )j r t; in our
formalism is not the same as inDDFT. TheDDFT equation involves themost-likely solution, r ( )r t; and
( )j r t; . Hopefully, this point also sheds light on the discussion in the literature about the compatibility ofDDFT
andfluctuations. Indeed, it should nowbe clear that there is nomuch sense in (artificially) adding noise to a
DDFT equation, as it already contains the information offluctuations. This also reveals the importance of a
bottom-up derivation, which avoids not only confusion but also themisuse of the equations. For instance, one
should not expect to describe the observed dynamics withDDFT in a regimewhere fluctuations are considerably
important (the ‘strong noise limit’). In this case, the appropriate Lagrangian should be derived andminimised
accordingly. This very interesting point, however, goes beyond the scope of this work.
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5. Concluding remarks

Wehave introduced a bottom-up derivation of FH to describe general soft-matter systems out of equilibrium.
This extends the application of FH to systems of arbitrarily shaped particles where local orientation plays a key
role, e.g.the fundamental study of perfectly-rough spheres [7], loaded spherocylinders [7, 8], nematic solutions
[62, 63], the study of biological processes such as protein adsorption and trapping, antibody-antigen interaction,
biochemical assembly bymonomer aggregation or polymerisation [19]. Furthermore,many processes require
the consideration offluctuations in order to correctly capture and elucidate their dynamics. Phase
transformations such as liquid-crystal transitions [43, 44, 63, 64, 65], and biological processes such as bone
formation [66, 67] or in vivo protein crystallisation [68, 69], are clear examples of that need.We believe that the
FH formalism developed here can be utilised to tackle all these problems andmore.

Ourwork introduces, for thefirst time, afluctuatingDDFT for general colloidal fluids, which in itself is a
generalisation of previous deterministic DDFTs [11, 29, 30]. Indeed, we have shown that the naturally emerging
free-energy functional for themesoscopic FH exhibits the same properties as the equilibrium free-energy
functional ofDFT [21, 22]. This is in contrast with the free-energy functional obtained by following the ‘classical’
procedure outlined byKawasaki [41] andDean [42], which only coincides with equilibriumDFTderivation
when the correlations between particles can be neglected, i.e. r r r¢ ~ ¢( ) ( ) ( )( ) r r r r,2 .What ismore, our work
shows the connection betweenfluctuatingDDFT and the Landau–Lifshitz FH formalism, demonstrating that
our framework recovers the (phenomenological) stochasticNS equation of an isothermal system. Thus, the
derivation presented here establishes a formal connection between themicroscopic dynamics of the constituent
particles and the time evolution of themesoscopic continuumfields defining the dynamical state of a real
system.Moreover, we have demonstrated the generality and versatility of our framework by showing how it
recovers the deterministic governing equations of selected paradigmaticmodel systems throughout the
derivation, namely spherically symmetric colloids, loaded spheres and purely arbitrary-shape particles. This
framework can be applied to further generalise FH to describe active soft-matter systems, which are naturally out
of equilibrium. For that purpose one should include the self-propulsion forces and torques characteristic of
activemedia. This could be readily achieved by including an additional term ( )F r t;i

A inside the solvent-
averaged interaction forces and torques Fi.We are currently studying how such forces and torques affect the
energy functional involved and the resultant FHE.

Finally, we believe that our results willmotivate further analytical studies on the role of particle orientation
both in passive and activematter. An interesting extension of the framework developed herewould be to study
the effects of torsional DoF present in flexible-chainmolecules [70] andmultiple-particle species [31]. A natural
application of our formalismwould also be the study of nucleation by generalising themesoscopic nucleation
theory by Lutsko [52]. This would allow us to evaluate the impact of the coupling between translational and
rotationalDoF on characteristic quantities, such as the nucleation barrier and rate. But also effects of walls
[71, 72] and confinement [73, 74–77], which in general should lead to definite orientation in the first particle
layers near a solid substrate which in turn can induce anisotropy of both equilibrium and transport properties.
Orientation coupledwith layering can also cause formation of new phases in the fluidwith the extreme formof
the substrate-induced ordering being ‘surface freezing’, i.e. formation of a crystalline phase above the bulk
freezing point. Of particular interest would also be nonlinear dynamics problems, for example nonlinear
phenomena of spontaneous symmetry breaking and pattern formation due to orientation at themicroscale,
responsible for self-organisation on themesoscopic level.We shall examine these and related questions in future
studies.
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