13 research outputs found

    Hydrological thresholds and basin control over paleoflood records in lakes

    Get PDF
    The scarcity of long-term hydrological data is a barrier to reliably determining the likelihood of floods becoming more frequent and/or intense in a warmer world. Lake sediments preserve characteristic event layers, offering the potential to develop widely distributed and unique chronologies of historical floods. Inferring flood magnitude remains a greater challenge, previously overcome in part by analyzing sharply laminated polar or alpine sequences. Here we demonstrate an approach to obtain flood frequency and magnitude data from an unexploited resource, the largely visually homogeneous, organic sediments that typify most temperate lakes. The geochemical composition and end-member modeling of sediment trap and adjacent short core particle size data for Brotherswater (northwest England) discriminates the signature of infrequent, coarse-grained flood deposits from seasonal and longer-term allogenic (enhanced discharge and sediment supply during winter) and autogenic (summer productivity, thermal mixing) depositional processes. Comparing the paleoflood reconstruction to local river discharges shows that hydrological thresholds censor event signature preservation, with 4 yr recurrence intervals detectable in delta-proximal sediments declining to 9 yr in the lake center. Event threshold (discharge) and process characterization are essential precursors to discerning flood magnitude from sediment archives. Implementation of our approach in globally prevalent temperate lakes offers a vast, unique repository of long-term hydrological data for hydrologists, climate modelers, engineers, and policy makers addressing future flood risks

    Macronutrient processing by temperate lakes: a dynamic model for long-term, large-scale application

    Get PDF
    We developed a model of the biogeochemical and sedimentation behaviour of carbon (C), nitrogen (N) and phosphorus (P) in lakes, designed to be used in long-term (decades to centuries) and large-scale (104 – 105 km2) macronutrient modelling, with a focus on human-induced changes. The model represents settling of inflow suspended particulate matter, production and settling of phytoplankton, decomposition of organic matter in surface sediment, denitrification, and DOM flocculation and decomposition. The model uses 19 parameters, 13 of which are fixed a priori. The remaining 6 were obtained by fitting data from 109 temperate lakes, together with other information from the literature, which between them characterised the stoichiometric incorporation of N and P into phytoplankton via photosynthesis, whole-lake retention of N and P, N removal by denitrification, and the sediment burial of C, N and P. To run the model over the long periods of time necessary to simulate sediment accumulation and properties, simple assumptions were made about increases in inflow concentrations and loads of dissolved N and P and of catchment-derived particulate matter (CPM) during the 20th century. Agreement between observations and calculations is only approximate, but the model is able to capture wide trends in the lakewater and sediment variables, while also making reasonable predictions of net primary production. Modelled results suggest that allochthonous sources of carbon (CPM and dissolved organic matter) contribute more to sediment carbon than the production and settling of algal biomass, but the relative contribution due to algal biomass has increased over time. Simulations for 8 UK lakes with sediment records suggest that during the 20th century average carbon fixation increased 6-fold and carbon burial in sediments by 70%, while the delivery of suspended sediment from the catchments increased by 40% and sediment burial rates of N and P by 131% and 185% respectively

    Low-cost electronic sensors for environmental research: pitfalls and opportunities

    Get PDF
    Repeat observations underpin our understanding of environmental processes, but financial constraints often limit scientists’ ability to deploy dense networks of conventional commercial instrumentation. Rapid growth in the Internet-Of-Things (IoT) and the maker movement is paving the way for low-cost electronic sensors to transform global environmental monitoring. Accessible and inexpensive sensor construction is also fostering exciting opportunities for citizen science and participatory research. Drawing on 6 years of developmental work with Arduino-based open-source hardware and software, extensive laboratory and field testing, and incor- poration of such technology into active research programmes, we outline a series of successes, failures and lessons learned in designing and deploying environmental sensors. Six case studies are presented: a water table depth probe, air and water quality sensors, multi-parameter weather stations, a time-sequencing lake sediment trap, and a sonic anemometer for monitoring sand transport. Schematics, code and purchasing guidance to reproduce our sensors are described in the paper, with detailed build instructions hosted on our King’s College London Geography Environmental Sensors Github repository and the FreeStation project website. We show in each case study that manual design and construction can produce research-grade scientific instrumentation (mean bias error for calibrated sensors –0.04 to 23%) for a fraction of the conventional cost, provided rigorous, sensor-specific calibration and field testing is conducted. In sharing our collective experiences with build-it- yourself environmental monitoring, we intend for this paper to act as a catalyst for physical geographers and the wider environmental science community to begin incorporating low-cost sensor development into their research activities. The capacity to deploy denser sensor networks should ultimately lead to superior envi- ronmental monitoring at the local to global scales

    Chronic atmospheric reactive N deposition has breached the N sink capacity of a northern ombrotrophic peatbog increasing the gaseous and fluvial N losses

    Get PDF
    Peatlands play an important role in modulating the climate, mainly through sequestration of carbon dioxide into peat carbon, which depends on the availability of reactive nitrogen (Nr) to mosses. Atmospheric Nr deposition in the UK has been above the critical load for functional and structural changes to peatland mosses, thus threatening to accelerate their succession by vascular plants and increasing the possibility of Nr export to downstream ecosystems. The N balance of peatlands has received comparatively little attention, mainly due to the difficulty in measuring gaseous N losses as well as the Nr inputs due to biological nitrogen fixation (BNF). In this study we have estimated the mean annual N balance of an ombrotrophic bog (Migneint, North Wales) by measuring in situ N2 + N2O gaseous fluxes and also BNF in peat and mosses. Fluvial N export was monitored through a continuous record of DON flux, while atmospheric N deposition was modelled on a 5 × 5 km grid. The mean annual N mass balance was slightly positive (0.7 ± 4.1 kg N ha−1 y−1) and varied interannually indicating the fragile status of this bog ecosystem that has reached N saturation and is prone to becoming a net N source. Gaseous N losses were a major N output term accounting for 70% of the N inputs, mainly in the form of the inert N2 gas, thus providing partial mitigation to the adverse effects of chronic Nr enrichment. BNF was suppressed by 69%, compared to rates in pristine bogs, but was still active, contributing ~2% of the N inputs. The long-term peat N storage rate (8.4 ± 0.8 kg N ha−1 y−1) cannot be met by the measured N mass balance, showing that the bog catchment is losing more N than it can store due its saturated status

    Phosphorus supply affects long-term carbon accumulation in mid-latitude ombrotrophic peatlands

    Get PDF
    Ombrotrophic peatlands are a globally important carbon store and depend on atmospheric nutrient deposition to balance ecosystem productivity and microbial decomposition. Human activities have increased atmospheric nutrient fluxes, but the impacts of variability in phosphorus supply on carbon sequestration in ombrotrophic peatlands are unclear. Here, we synthesise phosphorus, nitrogen and carbon stoichiometric data in the surface and deeper layers of mid-latitude Sphagnum-dominated peatlands across Europe, North America and Chile. We find that long-term elevated phosphorus deposition and accumulation strongly correlate with increased organic matter decomposition and lower carbon accumulation in the catotelm. This contrasts with literature that finds short-term increases in phosphorus supply stimulates rapid carbon accumulation, suggesting phosphorus deposition imposes a threshold effect on net ecosystem productivity and carbon burial. We suggest phosphorus supply is an important, but overlooked, factor governing long-term carbon storage in ombrotrophic peatlands, raising the prospect that post-industrial phosphorus deposition may degrade this carbon sink

    Deciphering long-term records of natural variability and human impact as recorded in lake sediments: a palaeolimnological puzzle

    Get PDF
    Global aquatic ecosystems are under increasing threat from anthropogenic activity, as well as being exposed to past (and projected) climate change, however, the nature of how climate and human impacts are recorded in lake sediments is often ambiguous. Natural and anthropogenic drivers can force a similar response in lake systems, yet the ability to attribute what change recorded in lake sediments is natural, from that which is anthropogenic, is increasingly important for understanding how lake systems have, and will continue to function when subjected to multiple stressors; an issue that is particularly acute when considering management options for aquatic ecosystems. The duration and timing of human impacts on lake systems varies geographically, with some regions of the world (such as Africa and South America) having a longer legacy of human impact than others(e.g. New Zealand). A wide array of techniques (biological, chemical, physical and statistical) is available to palaeolimnologists to allow the deciphering of complex sedimentary records. Lake sediments are an important archive of how drivers have changed through time, and how these impacts manifest in lake systems. With a paucity of ‘real‐time’ data pre‐dating human impact, palaeolimnological archives offer the only insight into both natural variability (i.e. that driven by climate and intrinsic lake processes) and the impact of people. Whilst there is a need to acknowledge complexity, and temporal and spatial variability when deciphering change from sediment archives, a palaeolimnological approach is a powerful tool for better understanding and managing global aquatic resources

    Quantifying system disturbance and recovery from historical mining-derived metal contamination at Brotherswater, northwest England

    Get PDF
    The final publication is available at Springer via https://doi.org/10.1007/s10933-016-9907-1Metal ore extraction in historical times has left a legacy of severe contamination in aquatic ecosystems around the world. In the UK, there are ongoing nationwide surveys of present-day pollution discharged from abandoned mines but few assessments of the magnitude of contamination and impacts that arose during historical metal mining have been made. We report one of the first multi-centennial records of lead (Pb), zinc (Zn) and copper (Cu) fluxes into a lake (Brotherswater, northwest England) from point-sources in its catchment (Hartsop Hall Mine and Hogget Gill processing plant) and calculate basin-scale inventories of those metals. The pre-mining baseline for metal contamination has been established using sediment cores spanning the past 1,500 years and contemporary material obtained through sediment trapping. These data enabled the impact of 250 years of local, small-scale mining (1696 – 1942) to be quantified and an assessment of the trajectory towards system recovery to be made. The geochemical stratigraphy displayed in twelve sediment cores show strong correspondence to the documented history of metal mining and processing in the catchment. The initial onset in 1696 was detected, peak Pb concentrations (>10,000 µg g-1) and flux (39.4 g m-2 y-1) corresponded to the most intensive mining episode (1863-1871) and 20th century technological enhancements were reflected as a more muted sedimentary imprint. After careful evaluation, we used these markers to augment a Bayesian age-depth model of the independent geochronology obtained using radioisotope dating (14C, 210Pb, 137Cs and 241Am). Total inventories of Pb, Zn and Cu for the lake basin during the period of active mining were 15,415 kg, 5,897 kg and 363 kg, respectively. The post-mining trajectories for Pb and Zn project a return to pre-mining levels within 54-128 years for Pb and 75-187 years for Zn, although future remobilisation of metal-enriched catchment soils and floodplain sediments could perturb this recovery. We present a transferable paleolimnological approach that highlights flux-based assessments are vital to accurately establish the baseline, impact and trajectory of mining-derived contamination for a lake catchment
    corecore