367 research outputs found

    A combined proteomics, metabolomics and in vivo analysis approach for the characterization of probiotics in large-scale production

    Get PDF
    The manufacturing processes of commercial probiotic strains may be affected in different ways in the attempt to optimize yield, costs, functionality, or stability, influencing gene expression, protein patterns, or metabolic output. Aim of this work is to compare different samples of a high concentration (450 billion bacteria) multispecies (8 strains) formulation produced at two different manufacturing sites, United States of America (US) and Italy (IT), by applying a combination of functional proteomics, metabolomics, and in vivo analyses. Several protein-profile differences were detected between IT-and US-made products, with Lactobacillus paracasei, Streptococcus thermophilus, and Bifidobacteria being the main affected probiotics/microorganisms. Performing proton nuclear magnetic spectroscopy (1H-NMR), some discrepancies in amino acid, lactate, betaine and sucrose concentrations were also reported between the two products. Finally, we investigated the health-promoting and antiaging effects of both products in the model organism Caenorhabditis elegans. The integration of omics platforms with in vivo analysis has emerged as a powerful tool to assess manufacturing procedures

    Percutaneous Tibial Nerve Stimulation for Treatment of Idiopathic Faecal Incontinence: Mid-term Results from a Single Center

    Get PDF
    Abstract Objective: Percutaneous tibial nerve stimulation is a recent and minimally invasive treatment for faecal incontinence (FI). The aim of this study is to evaluate the mid-term results in patients with idiopathic faecal incontinence (IFI). Methods: Fifty one patients (42 female and 9 male) were prospectively recruited. Patients were treated twice a week for 6 weeks as per study protocol. We have assessed the degree of fecal incontinence using the Cleveland Clinic faecal incontinence (CCF-FI) score at baseline, at 6 weeks, at 6 months and at 1 year. Also the anorectal manometric data (mean resting pressure (MRP), squeeze pressure (SP) and, rectal sensation) at baseline, at 6 weeks and at 6 months have been evaluated. Results: The median CCF-FI score was significantly decreased from an initial baseline value from 12 to 7 at 6 weeks, 3 at 6 months and, 3 at 1 year (respectively: 1st interquartile 4.5, 1, 0 vs 10; 3rd interquartile 9, 5, 5 vs 14.5, p = 0.0001). Anorectal manometry showed an improvement of the internal (resting pressure, MRP) and the external sphincters (squeeze pressure, SP) at 6 months compared to the baseline and 6 weeks by PTNS, while, RP and SP at 6 months was greater than at baseline and 6 weeks (p = 0.004 and p = 0.002 respectively). Conclusions: This study demonstrates that stimulation of the posterior tibial nerve could be an excellent procedure for the treatment of IFI. The stimulation of the posterior tibial nerve can improve the fecal continence (CCF-FI score) in the short term and this improvement is maintained after 1 year of follow-up without treatmen

    Ianus: an Adpative FPGA Computer

    Full text link
    Dedicated machines designed for specific computational algorithms can outperform conventional computers by several orders of magnitude. In this note we describe {\it Ianus}, a new generation FPGA based machine and its basic features: hardware integration and wide reprogrammability. Our goal is to build a machine that can fully exploit the performance potential of new generation FPGA devices. We also plan a software platform which simplifies its programming, in order to extend its intended range of application to a wide class of interesting and computationally demanding problems. The decision to develop a dedicated processor is a complex one, involving careful assessment of its performance lead, during its expected lifetime, over traditional computers, taking into account their performance increase, as predicted by Moore's law. We discuss this point in detail

    An in-depth view of the microscopic dynamics of Ising spin glasses at fixed temperature

    Full text link
    Using the dedicated computer Janus, we follow the nonequilibrium dynamics of the Ising spin glass in three dimensions for eleven orders of magnitude. The use of integral estimators for the coherence and correlation lengths allows us to study dynamic heterogeneities and the presence of a replicon mode and to obtain safe bounds on the Edwards-Anderson order parameter below the critical temperature. We obtain good agreement with experimental determinations of the temperature-dependent decay exponents for the thermoremanent magnetization. This magnitude is observed to scale with the much harder to measure coherence length, a potentially useful result for experimentalists. The exponents for energy relaxation display a linear dependence on temperature and reasonable extrapolations to the critical point. We conclude examining the time growth of the coherence length, with a comparison of critical and activated dynamics.Comment: 38 pages, 26 figure

    apeNEXT: A multi-TFlops Computer for Simulations in Lattice Gauge Theory

    Full text link
    We present the APE (Array Processor Experiment) project for the development of dedicated parallel computers for numerical simulations in lattice gauge theories. While APEmille is a production machine in today's physics simulations at various sites in Europe, a new machine, apeNEXT, is currently being developed to provide multi-Tflops computing performance. Like previous APE machines, the new supercomputer is largely custom designed and specifically optimized for simulations of Lattice QCD.Comment: Poster at the XXIII Physics in Collisions Conference (PIC03), Zeuthen, Germany, June 2003, 3 pages, Latex. PSN FRAP15. Replaced for adding forgotten autho

    Nature of the spin-glass phase at experimental length scales

    Full text link
    We present a massive equilibrium simulation of the three-dimensional Ising spin glass at low temperatures. The Janus special-purpose computer has allowed us to equilibrate, using parallel tempering, L=32 lattices down to T=0.64 Tc. We demonstrate the relevance of equilibrium finite-size simulations to understand experimental non-equilibrium spin glasses in the thermodynamical limit by establishing a time-length dictionary. We conclude that non-equilibrium experiments performed on a time scale of one hour can be matched with equilibrium results on L=110 lattices. A detailed investigation of the probability distribution functions of the spin and link overlap, as well as of their correlation functions, shows that Replica Symmetry Breaking is the appropriate theoretical framework for the physically relevant length scales. Besides, we improve over existing methodologies to ensure equilibration in parallel tempering simulations.Comment: 48 pages, 19 postscript figures, 9 tables. Version accepted for publication in the Journal of Statistical Mechanic

    Matching microscopic and macroscopic responses in glasses

    Get PDF
    We first reproduce on the Janus and Janus II computers a milestone experiment that measures the spin-glass coherence length through the lowering of free-energy barriers induced by the Zeeman effect. Secondly we determine the scaling behavior that allows a quantitative analysis of a new experiment reported in the companion Letter [S. Guchhait and R. Orbach, Phys. Rev. Lett. 118, 157203 (2017)]. The value of the coherence length estimated through the analysis of microscopic correlation functions turns out to be quantitatively consistent with its measurement through macroscopic response functions. Further, non-linear susceptibilities, recently measured in glass-forming liquids, scale as powers of the same microscopic length.Comment: 6 pages, 4 figure

    Simulating spin systems on IANUS, an FPGA-based computer

    Get PDF
    We describe the hardwired implementation of algorithms for Monte Carlo simulations of a large class of spin models. We have implemented these algorithms as VHDL codes and we have mapped them onto a dedicated processor based on a large FPGA device. The measured performance on one such processor is comparable to O(100) carefully programmed high-end PCs: it turns out to be even better for some selected spin models. We describe here codes that we are currently executing on the IANUS massively parallel FPGA-based system.Comment: 19 pages, 8 figures; submitted to Computer Physics Communication
    • …
    corecore