252 research outputs found

    Observations on the distribution, daytime migrations and daily food intake rates of Chaoborus flavicans (Meigen) in the Goggausee [Translation from: Carinthia II 165(85), 184-190, 1975]

    Get PDF
    The Goggausee, in spite of its modest depth (Zmax = 12 metres), shows meromictic properties: autumn and spring circulation extend only to a depth of 8 metres. The water layers below about 10 metres are constantly oxygen-free, the critical zone with at least intermittent oxygen loss lies at a depth of between 6 and 10 metres. A limnological excursion in May 1974 offered an opportunity to investigate the daily vertical migration of the species Chaoborus flavicans with reference to its food supply of zooplankton as well as the chance to carry out some preliminary experiments on its rate of food intake. Among the studied features were the planktonic depth distribution of Chaoborus flavicans and the food intake of Chaoborus larvae under experimental conditions

    Direct observation of polar tweed in LaAlO3

    Get PDF
    Polar tweed was discovered in mechanically stressed LaAlO3. Local patches of strained material (diameter ca. 5 μm) form interwoven patterns seen in birefringence images, Piezo-Force Microscopy (PFM) and Resonant Piezoelectric Spectroscopy (RPS). PFM and RPS observations prove unequivocally that electrical polarity exists inside the tweed patterns of LaAlO3. The local piezoelectric effect varies greatly within the tweed patterns and reaches magnitudes similar to quartz. The patterns were mapped by the shift of the Eg soft-mode frequency by Raman spectroscopy

    Do fish go with the flow? The effects of periodic and episodic flow pulses on 0+ fish biomass in a constrained lowland river

    Get PDF
    The hydrological regime is a significant driver of fish population dynamics in rivers, but there is a dearth of information regarding the mechanisms behind its effects on temperate species, especially non-salmonids. This study investigated the effects of periodic and episodic flow pulses on 0+ fish biomass in a constrained lowland river. De-seasonalized cross-correlation analysis was used to examine time-lagged correlations in episodic signals, in isolation of seasonal periodicity, to identify the responses and response timings of 0+ fish production to abiotic variables, and whether apparent “pulse-depletions” in biomass occur instantaneously (e.g., due to fish displacement during high pulses) or after a time lag. As anticipated, 0+ fish biomass was highest during periods of low discharge and high temperatures in summer, but cross-correlation analysis revealed a negative impact of high pulses on 0+ fish biomass with a lag of 7 months. There was no evidence for an instantaneous pulse-depletion effect of discharge on 0+ fish biomass, suggesting that the indirect effects of high pulses, such as habitat or food-web modifications, are more influential

    Assessing the conservation value of waterbodies: the example of the Loire floodplain (France)

    Get PDF
    In recent decades, two of the main management tools used to stem biodiversity erosion have been biodiversity monitoring and the conservation of natural areas. However, socio-economic pressure means that it is not usually possible to preserve the entire landscape, and so the rational prioritisation of sites has become a crucial issue. In this context, and because floodplains are one of the most threatened ecosystems, we propose a statistical strategy for evaluating conservation value, and used it to prioritise 46 waterbodies in the Loire floodplain (France). We began by determining a synthetic conservation index of fish communities (Q) for each waterbody. This synthetic index includes a conservation status index, an origin index, a rarity index and a richness index. We divided the waterbodies into 6 clusters with distinct structures of the basic indices. One of these clusters, with high Q median value, indicated that 4 waterbodies are important for fish biodiversity conservation. Conversely, two clusters with low Q median values included 11 waterbodies where restoration is called for. The results picked out high connectivity levels and low abundance of aquatic vegetation as the two main environmental characteristics of waterbodies with high conservation value. In addition, assessing the biodiversity and conservation value of territories using our multi-index approach plus an a posteriori hierarchical classification methodology reveals two major interests: (i) a possible geographical extension and (ii) a multi-taxa adaptation

    Riparian ecotones and spatial variation of fish assemblages in Portuguese lowland streams

    Get PDF
    The first results of a long-term study on the role of riparian ecotones on the population and community dynamics of Iberian stream fish are presented and discussed . Riparian and macrophyte cover, bank slope and depth were among the most important variables affecting fish distribution . In general small fish favoured shallow areas with high macrophyte cover, whereas large fish dominated in deep areas with a high riparian cover . Slight spatial changes in terrestrial prey use were found suggesting a minor role for this resource during autumn . Finally, no significant spatial differences were found for linear growth, although some differences were obtained for the condition facto

    Elastic and anelastic relaxation behaviour of perovskite multiferroics I: PbZr0.53Ti0.47O3(PZT)-PbFe0.5Nb0.5O3(PNF)

    Get PDF
    Perovskites in the ternary system PbTiO3 (PT)–PbZrO3 (PZ)–Pb(Fe0.5Nb0.5)O3 (PFN) have attracted close interest because they can display simultaneous ferroelectric, magnetic and ferroelastic properties. Those with the most sensitive response to external fields are likely to have compositions near the morphotropic phase boundary (MPB) which lies close to the binary join Pb(Zr0.53Ti0.47)O3 (PZT)–PFN. In the present study, the strength and dynamics of strain coupling behaviour which accompanies the development of ferroelectricity and (anti)ferromagnetism in ceramic PZT–PFN samples have been investigated by resonant ultrasound spectroscopy. Elastic softening ahead of the cubic–tetragonal transition does not fit with models based on dispersion of the soft mode or relaxor characteristics but is attributed, instead, to coupling between acoustic modes and a central peak mode from correlated relaxations and/or microstructure dynamics. Softening of the shear modulus through the transition by up to ~50 % fits with the expected pattern for linear/quadratic strain/order parameter coupling at an improper ferroelastic transition and close to tricritical evolution for the order parameter. Superattenuation of acoustic resonances in a temperature interval of ~100 K below the transition point is indicative of mobile ferroelastic twin walls. By way of contrast, the first-order tetragonal–monoclinic transition involves only a small change in the shear modulus and is not accompanied by significant changes in acoustic dissipation. The dominant feature of the elastic and anelastic properties at low temperatures is a concave-up variation of the shear modulus and relatively high loss down to the lowest temperature, which appears to be the signature of materials with substantial local strain heterogeneity and a spectrum of strain relaxation times. No evidence of magnetoelastic coupling has been found, in spite of the samples displaying ferromagnetism below ~550 K and possible spin glass ordering below ~50 K. For the important multiferroic perovskite ceramics with compositions close to the MPB of ternary PT-PZ-PFN, there must be some focus in future on the role of strain heterogeneity

    Elastic and anelastic relaxation behaviour of perovskite multiferroics II: PbZr0.53Ti0.47O3 (PZT)–PbFe0.5Ta0.5O3 (PFT)

    Get PDF
    Elastic and anelastic properties of ceramic samples of multiferroic perovskites with nominal compositions across the binary join PbZr0.53Ti0.47O3–PbFe0.5Ta0.5O3 (PZT–PFT) have been assembled to create a binary phase diagram and to address the role of strain relaxation associated with their phase transitions. Structural relationships are similar to those observed previously for PbZr0.53Ti0.47O3–PbFe0.5Nb0.5O3 (PZT–PFN), but the magnitude of the tetragonal shear strain associated with the ferroelectric order parameter appears to be much smaller. This leads to relaxor character for the development of ferroelectric properties in the end member PbFe0.5Ta0.5O3. As for PZT–PFN, there appear to be two discrete instabilities rather than simply a reorientation of the electric dipole in the transition sequence cubic–tetragonal–monoclinic, and the second transition has characteristics typical of an improper ferroelastic. At intermediate compositions, the ferroelastic microstructure has strain heterogeneities on a mesoscopic length scale and, probably, also on a microscopic scale. This results in a wide anelastic freezing interval for strain-related defects rather than the freezing of discrete twin walls that would occur in a conventional ferroelastic material. In PFT, however, the acoustic loss behaviour more nearly resembles that due to freezing of conventional ferroelastic twin walls. Precursor softening of the shear modulus in both PFT and PFN does not fit with a Vogel–Fulcher description, but in PFT there is a temperature interval where the softening conforms to a power law suggestive of the role of fluctuations of the order parameter with dispersion along one branch of the Brillouin zone. Magnetic ordering appears to be coupled only weakly with a volume strain and not with shear strain but, as with multiferroic PZT–PFN perovskites, takes place within crystals which have significant strain heterogeneities on different length scales
    corecore