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Summary 

The hydrological regime is a significant driver of fish population dynamics in rivers, but 

there is a dearth of information regarding the mechanisms behind its effects on temperate 

species, especially non-salmonids. This study investigated the effects of periodic and episodic 

flow pulses on 0+ fish biomass in a constrained lowland river. De-seasonalised cross-

correlation analysis was used to examine time-lagged correlations in episodic signals, in 

isolation of seasonal periodicity, to identify the responses and response timings of 0+ fish 

production to abiotic variables, and whether apparent ―pulse-depletions‖ in biomass occur 

instantaneously (e.g. due to fish displacement during high pulses) or after a time lag. As 

anticipated, 0+ fish biomass was highest during periods of low discharge and high 

temperatures in summer, but cross-correlation analysis revealed a negative impact of high 

pulses on 0+ fish biomass with a lag of 7 months. There was no evidence for an instantaneous 

pulse-depletion effect of discharge on 0+ fish biomass, suggesting that the indirect effects of 

high pulses, such as habitat or food-web modifications, are more influential. 
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Introduction 

Disturbances, defined by Lake (2000) as ―potentially damaging forces applied to a habitat 

space, population, community or ecosystem‖, can have a profound influence on the physical 

and biological characteristics of ecosystems and their functioning. Flow pulses (sensu 

Tockner et al., 2000) and flood pulses (sensu Junk et al., 1989), for example, can be 

considered to represent flow-generated disturbances (Lake, 2007), and are responsible for 

creating and structuring habitats and controlling biota in lowland rivers (Resh et al., 1988; 

Junk et al., 1989; Welcomme and Halls, 2001). Fishes are useful indicators of environmental 

disturbances in lowland rivers because the various guilds integrate a wide range of conditions 

over their life cycles that are linked to the habitat requirements of particular species and 

ontogenetic stages (Copp, 1989; Schiemer, 2000; Welcomme et al., 2006). Larvae and 0+ 

juveniles are particularly applicable in this respect because tolerable habitat conditions are 

often much narrower for such fishes compared with older and larger individuals, owing to the 

strict physical and energetic constraints facing young fishes (Schiemer et al., 1991, 2001a; 

Flore et al., 2001; Jurajda et al., 2010; Leclere et al., 2012; Musil et al., 2012). 

Morphological and behavioural limitations often restrict the early developmental stages of 

fishes to specific habitats, which, together with their small size and fragility, means that 

larval and 0+ juvenile fishes are more susceptible than adults to adverse changes in their 

environment (Copp et al., 1991; Schiemer and Waidbacher, 1992; Sogard, 1997; Jones and 

Petreman, 2012). The effects of flow and extreme events, as well as habitat fragmentation 

and degradation, are therefore generally most easily observed in 0+ fishes (Harvey, 1987; 

Nunn et al., 2003, 2007b, 2010; Jones and Petreman, 2012). 

 

Numerous studies have suggested that the cause of fluctuations in a biological response can 

be attributed to episodic fluctuations in an environmental driver (e.g. Strange et al., 1992; 
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Dixon et al., 1999) or to deterministic oscillations such as seasonal cycles (e.g. Broekhuizen 

and McKenzie, 1995; Lehodey et al., 2006). In the context of fish populations, flow pulses 

outside the normal range are seen as potentially negative disturbances capable of depleting 

fish stocks through physical displacement (Cowx et al. 2012; Jones and Petreman, 2012). For 

simplicity, this is hereafter referred to as ―pulse-depletion‖. Several studies have examined 

the biomass and production of larval and juveniles fishes in lowland rivers (e.g. Gerking, 

1978; Welcomme, 1979; Penczak et al., 1982; Holčík, 1996), but the reported impacts of 

river discharge have been varied: some populations were reduced in size or extirpated by high 

discharges (e.g. Záleský, 1925; Onodera and Ueno, 1961; Čihar, 1976), whereas others were 

positively affected (e.g. Stanković and Yanković, 1971; Holčík and Bastl, 1977). However, 

most studies have focused on discharge impacts over short time periods (<1 year) and hence 

provide no evidence of longer-term impacts (Holčík, 1996). The negative impacts of elevated 

flow events on fish are often reported as acute and relatively instantaneous (a ―pulse‖ 

response; Glasby and Underwood, 1996; Lake, 2000), with displacement-induced mortality, 

or ―wash-out‖, widely cited as a key mechanism (e.g. Harvey, 1987; Bolland et al., 2015), 

especially in poorly structured or degraded habitats (Pearsons et al., 1992; Bischoff and 

Wolter, 2001); ―wash-down‖ may also be important in highly fragmented systems, with 

displaced fishes sometimes unable to return upstream due to the presence of migration 

barriers. It is important to note, however, that elevated flow events are an integral component 

of natural hydrological regimes, and generally only become an issue in watercourses that 

have been degraded by anthropogenic modifications. 

 

Much of the current evidence for the existence of a pulse-depletion paradigm in riverine 

ecology is based on simple correlations between discharge and a biological response (e.g. fish 

abundance, biomass). These analyses often demonstrate a negative relationship between the 



 

 

This article is protected by copyright. All rights reserved. 

response variable and discharge, and causation is assumed. However, conclusions may be 

erroneous if they have not considered the existence of time-lagged relationships or accounted 

for inherent seasonality from annual weather patterns and spawning cycles, which could 

generate coincidental driver-response relationships. Time lags between environmental drivers 

and biotic responses are common and have been reported in numerous aquatic studies (Olden 

and Neff, 2001). Examples include food-web interactions (e.g. Mateev, 1995; Olden, 2000), 

dynamics of phytoplankton (e.g. Duarte, 1990; Vaque et al., 1997), zooplankton (e.g. 

Broekhuizen and Mckenzie, 1995) and plant communities (e.g. Healy, 1997), and fish-

environment relationships (e.g. Kim et al., 1997; Downton and Miller, 1998; Smith et al., 

2000). Failure to recognise time-lagged relationships could lead to erroneous conclusions 

about the response and response timing of a biological indicator to a driver or disturbance and 

the mechanisms that underlay them. Walters and Collie (1988), for example, described a 

situation where an apparent negative stock-recruitment relationship can be observed when 

favourable environmental conditions cause stocks to increase, but with a lag such that peaks 

in stock size coincide with periods of deteriorating environmental conditions. It should also 

be borne in mind that fish habitat use and geographical distribution may change according to 

environmental conditions (Keckeis et al., 1997; Bolland et al., 2015), which could incorrectly 

be interpreted as pulse-depletion if sampling strategies are inadequate. 

 

 

 

In this study, we present a method that examines time-lagged correlations in episodic signals, 

interpreted as aseasonal flow pulses, in isolation of obfuscating low-frequency oscillations 

representing seasonal periodicity (Figure 1). The specific definition of Trexler et al. (2005), 

whereby a disturbance is defined as ―a process that removes biomass‖, was adopted. The aim 
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was to elucidate the influence of a suite of abiotic factors on the long-term productivity of 0+ 

fishes in a constrained lowland river, and determine if biomass is influenced most by 

instantaneous pulse-depletion or the indirect effects of high pulses, such as habitat or food-

web modifications. It was hypothesised that an intra-annual, non-time-lagged relationship 

between fish biomass and discharge (strongest significant relationship at time = 0) would be 

detected, validating instantaneous pulse-depletion as the most significant driver of changes in 

larval and juvenile fish production. 

 

Materials and methods 

 

Study area 

This study was carried out on the lower River Trent, England (Figure 2). The Trent is the 

third longest river in the UK (274 km), with a long-term mean discharge of 84 m
3
s

-1
 and a 

catchment area of 10 500 km
2
. The river is impounded by a number of large weirs and 

sluices, resulting in a relatively stable discharge regime (Nunn et al., 2007a, b). 

 

Fish sampling 

Larval and 0+ juvenile fishes were captured monthly from May 1999 to June 2010, inclusive, 

at three fixed sites (Attenborough, no. samples = 119; Trent Bridge, no. samples = 122; 

Dunham, no. samples = 128) along a 60-km length of the Trent using a micromesh seine net 

(25 m long, 3 m deep, 3 mm hexagonal mesh) (369 samples in total). This net captures fishes 

with a minimum size of 5 mm, and is a very effective method of catching large numbers of 

small-bodied individuals (Cowx et al., 2001). In all cases, sampling was carried out in still, 

marginal areas <2 m depth, where 0+ fish aggregated throughout the sampling period. All 

fishes were identified to species (Pinder, 2001), measured (standard length, nearest mm) and 
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sub-samples were weighed (wet weight, nearest g) to produce species-specific weight-length 

relationships (W = aL
b
, where W = fresh weight (g), L = standard length (mm) and a and b are 

calculated from Log W = log a + log L, where a = y-axis intercept and b = regression slope); 

these were then used to calculate total 0+ fish biomass (Walton, 2013). A small number of 

short gaps in the 11-year dataset did not compromise its coverage of periodic and episodic 

hydrological events. 

 

The frequency of occurrence and relative abundance of each fish species at each site were 

calculated (Hynes, 1950), and biomass (g m
–2

) of 0+ fishes (all species combined) was 

calculated for each sample by dividing the biomass captured by the area netted (length × 

width of the rectangular area enclosed by the net). Biomass was calculated as it represents the 

total contribution of larval and juvenile individuals to fish production, is a useful measure of 

the amount of energy produced at the ecosystem level and thus available for ecological 

production at higher trophic levels, and is less susceptible than abundance to variations 

caused by fish hatching (Bagenal, 1978; Gerking, 1978; Penczak et al., 1982; Holčík, 1996; 

Sedgwick, 2006). Biomass estimates were then natural logarithm (x + 1) transformed to 

account for null catches, and median biomasses were compared between sites using Kruskal-

Wallis and post hoc Mann-Whitney U-tests. A Principal Components Analysis (PCA) biplot 

was produced to visualise the contribution of species biomass to the total community biomass 

in each year using Brodgar software (http://www.brodgar.com/). 

 

Characterisation of water temperature regime 

Water temperature data (°C) were obtained from the Environment Agency gauging station at 

Holme Pierrepont, located between Attenborough and Trent Bridge, from 1999 until its 

closure in 2004, after which they were calculated using the relationship between the River 

http://www.brodgar.com/
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Trent at Holme Pierrepont and the Yorkshire Ouse at Cawood (Trent = Ouse (0.97) + 1.603, 

P<0.001, r
2
 = 0.94). The data were used to calculate four variables, namely C18, Cmax, S1 

and S2, during two ―critical periods‖ in the development of 0+ fish; >12 °C-18 °C and >18 

°C-annual maxima (Mills and Mann, 1985; Piffady et al., 2010). C18 is the number of days 

between the first day to exceed 12 °C and the first to reach 18 °C, and Cmax is the number of 

days >18 °C to the annual maximum temperature. S1 and S2, respectively, are the sums of the 

differences (positive and negative) between daytime temperature and the mean daily inter-

annual temperature over each of the two periods (i.e. >12-18 °C, >18 °C-max. temperature), 

and express the difference in cumulative degree-days between a particular critical period and 

the average critical period, thereby indicating whether the periods are warmer or colder than 

the 11-year inter-annual mean (Piffady et al., 2010). They were computed as follows: 

           
    

 
   

 
 

   

     

 

           
    

 
   

 
 

    

     

 

 

where Tji is the temperature of the day j for the ith year and I is the number of days in the 

according critical period.  

 

 

 

 

Characterisation of river discharge regime 

Mean daily discharge data (m
3
 s

–1
) were obtained from the Environment Agency gauging 

station at Colwick (~4 km downstream of Trent Bridge and ~10 km downstream of 

Attenborough). The hydrograph was separated into ecologically relevant ―Indicators of 
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Hydrological Alteration‖ (IHA) according to Richter et al. (1996, 1997, 1998) using the IHA 

software package (http://conserveonline.org/workspaces/iha/) (see Table 1). The hydrograph 

was also categorised into five ―Environmental Flow Components‖ (EFCs; Richter and 

Thomas, 2007) to identify events that could cause a biological response. The EFC algorithm 

within the IHA software defines: (1) high flows as those exceeding the 75th percentile of all 

flows; (2) low flows as those not exceeding the 50th percentile; (3) extreme low flows as 

those not exceeding the 10th percentile; and (4) small and (5) large floods as flows with a 

return interval of 2 and 10 years, respectively.  

 

In addition, the cumulative number of days above the mean discharge, the sum of the 

differences between the daily maximum discharge and the mean, and the maximum discharge 

were calculated to describe how ‗wet‘ the two critical periods defined by the temperature 

variables C18 and Cmax (i.e. >12 °C-18 °C, >18 °C-max. temperature) were in any given 

year compared to the inter-annual mean of critical periods. These were labelled Q18, Qmax, 

Q1, Q2, Qmean (critical period) and Qmax (critical period), respectively. 

 

Fish-temperature and fish-discharge relationships 

Following correlation analysis to remove redundant correlated variables (rs = 0.7), a reduced 

set of 21 explanatory variables, namely IHAs and critical period variables (Table 1), was 

explored for relationships with the response variable (0+ fish biomass, standardised by area 

and averaged over all sites) using a series of linear regressions (multivariate techniques were 

not suitable due to a low case-to-variable ratio). False discovery rate (FDR) control 

(Benjamini and Hochberg, 1995) was used to account for the cumulative type-1-error 

associated with multiple comparisons (Shaffer, 1995). PCA was carried out to examine the 

underlying dimensions composed of weighted combinations of variables (principal 

http://conserveonline.org/workspaces/iha/
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components) and the interaction of these principal components with years. The results were 

displayed in a biplot using Brodgar software. In addition, a Pearson product-moment 

correlation was conducted to test for a relationship between mean daily water temperature 

and river discharge. 

 

Secondly, the interdependence of the dynamics of biomass-temperature and biomass-

discharge interactions were analysed using cross-correlation analysis of monthly mean values 

of 0+ fish biomass, river discharge and water temperature. The cross-correlation function 

quantifies the association between two variables, and is calculated for various positive and 

negative time lags and plotted on the x-axis, with the correlation coefficient (–1 to +1) on the 

y-axis (Zuur et al., 2007). Dotted lines representing the 95% upper and lower confidence 

intervals are then used to test the null hypothesis that the correlation between yt and xt-k is not 

significant; points outside this interval are significant cross-correlations with time lag k. 

Periodic components of the same frequency in both series lead to high cross-correlation 

values (peaks) at the corresponding lags; the height of the peaks can be considered a relative 

measure of connectivity between two variables (Scutareanu et al., 1999; Probst et al., 2012), 

and the positions of the peaks determine the phase shift (time lag) between the variables. In 

each analysis, the hypothesised influential variable (discharge, temperature), hereafter 

referred to as a ―driver‖, was used as the input variable and the hypothesised ―response‖ 

(biomass) as the output. The focus of this study was on relationships where peaks in the 

driver and response had positive time lags, as this could indicate causality; a positive 

correlation between driver and response would be represented by a significant peak in the top 

half of the output chart, whilst a negative correlation would be represented by a significant 

peak in the bottom half of the chart (Probst et al., 2012). Prewhitening removes spurious 

correlations based on temporal dependencies between adjacent values of the input (in this 
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case ―driver‖) time series and removes these influences from the output time series (in this 

case the ―response‖ time series) (Gröger and Fogarty, 2011; Shumway and Stoffer, 2011; 

Probst et al., 2012). To prewhiten the input time series, an integrated auto-regressive moving-

average (ARIMA) model was fitted to the input time series to remove significant 

autocorrelations therein. The p, d and q values of the input ARIMA model were determined 

by checking the autocorrelation of the model residuals; the model that included the lowest 

number of parameters while indicating no significant autocorrelation in the residuals was 

used to prewhiten the output time series (Supplementary Material Table 1). Prewhitening was 

used for cross-correlations of the trend and residual components in the biomass-discharge and 

biomass-temperature analyses, but not in seasonal components; the time series were 

absolutely regular in seasonal components, and seasonal autocorrelations cannot be removed 

by prewhitening. The potential error introduced by intra-multiplicity (Olden and Neff, 2001) 

was reduced by examining only a restricted number of lags (12) (Smith et al., 2000). This 

was deemed a suitable timescale within which to observe ecologically meaningful driver-

response relationships. 

 

Seasonal effects can mask cross-correlations that potentially represent a biotic response 

(Chatfield, 1989; Jassby and Powell, 1990). A seasonal and trend decomposition using 

repeated locally weighted scatterplot smoothing (LOESS) was therefore conducted using the 

STL function in R (Zuur et al., 2007). Repeated LOESS is an additive modelling technique 

that applies a smoothing curve to time series data. A large span width (width of periodic 

signal; 12 months) was used to provide an overview of long-term trends in biomass and 

environmental data in isolation of the influence of a seasonal periodic component. All time-

series were standardized by z-transformation to facilitate visualization (Blanchard et al., 

2010). 
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Results 

 

Fishes 

Approximately 500,000 fish of 29 species and 12 families were recorded over the 11-year 

study period. Overall, roach (Rutilus rutilus (L.)), dace (Leuciscus leuciscus (L.)), chub 

(Squalius cephalus (L.)), gudgeon (Gobio gobio (L.)), common bream (Abramis brama (L.)), 

three-spined stickleback (Gasterosteus aculeatus L.), perch (Perca fluviatilis L.), bleak 

(Alburnus alburnus (L.)) and minnow (Phoxinus phoxinus (L.)) occurred most frequently and 

in the highest abundances (Supplementary Material Table 2).  

 

The median 0+ fish biomass at Dunham (Med, IQR: 0.45, 0.02-2.99 g m
–2

) was significantly 

lower than at Attenborough (1.21, 0.04-10.18 g m
–2

; Mann-Whitney U-test: Z = –2.05, n = 

94, P = 0.040) and Trent Bridge (1.98, 0.06-8.07 g m
–2

; Mann-Whitney U-test: Z = –2.28, n = 

97, P = 0.02), but there was no significant difference between Attenborough and Trent Bridge 

(Mann-Whitney U-test: Z = 0.00, n = 94, P = 1.00). Attenborough had the highest mean 

biomass (mean ± S.D = 29.95 ± 80.48 g m
–2

), followed by Trent Bridge (6.48 ± 15.48 g m
–2

) 

and Dunham (3.34 ± 8.13 g m
–2

). 

 

The biomass composition of the assemblages was very variable over time. Although roach 

was dominant in most years (mean biomass of all sites), dominance changed dramatically 

between some years. This is best illustrated by the shift in the contribution of bream (to 

annual community biomass) from 15% (the fourth highest contributor to overall biomass in 

the assemblage) in 2001 to 49% (dominant) in 2002. Mean 0+ fish biomass (all sites) peaked 

in 2005, with high biomasses also recorded in contiguous years, caused largely by high 

densities at Attenborough; biomasses at Trent Bridge and Dunham were relatively stable over 
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the study period. The biomass minimum occurred in 2008. Generally, biomasses were higher 

in the second half of the year, due to the larger size of 0+ fishes at that time. Roach, dace and 

gudgeon contributed high percentage biomasses to the annual total in the first few years of 

the study period, with a substantial percentage biomass of chub also in 2001. By contrast, 

common bream contributed little to the percentage biomass in the first 3 years of the study 

period, but dominated from 2002-2004. Roach was the dominant species in 2005, but 2006 

onwards was generally mixed, with higher percentage biomass contributions from dace and 

chub more apparent in some years, whilst a substantial increase in the proportion of bleak in 

the fish assemblage occurred in 2009 (Figure 3). 

 

River discharge 

Over the 11-year period, the River Trent experienced one ―large flood‖, in November 2000 

(Figure 4). Five other events, mostly in the winter, were classed as ―high flows‖ (>75th 

percentile) (Figure 4). ―Low flows‖ were the dominant flow type, occurring ~62% of the time 

(Fig. 4). ―Extreme low flows‖ occurred annually, almost exclusively in the summer, with the 

longest low-flow period occurring in 2003 (Figure 4). IHA values indicated that mean 

monthly summer (May-September) flows were roughly 50% of mean flows during the winter 

(November-February), demonstrating high seasonal variation. In addition, the range between 

the mean 1-day minimum and maximum flows was approximately 410 m
3
s

–1
, indicating a 

difference of almost 15-fold between extreme low and extreme high flows. The mean number 

of high pulses per year (~12) was higher than the number of low pulses per year (~10), but 

low pulses had a longer mean duration (~6 days) than did high pulses (~5 days). 
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There was considerable inter-annual variation in the number of days above the basal 

discharge rate (long-term mean) during the C18 critical period. The years 2000 and 2001 had 

relatively high numbers of wetter-than-average days during the Cmax period, whereas 2006 

and 2007 had very few ‗wet‘ days; the cumulative amount of discharge above the long-term 

mean (Q1) followed a similar pattern, with approximately biannual cycles in both data sets 

(Figure 5a). 

 

Water temperature 

No similarities were observed in the patterns of water temperature during C18 and Cmax. 

The highest number of days in the C18 period was recorded in 2007 (43 days, mean ± S.D = 

18.8 ± 12.49 days), whereas the same year represented the period minimum for Cmax (4 

days, 25.45 ± 17.65 days). Whilst there was no clear trend in the interannual variation of C18, 

values for Cmax from 2003-2006 were higher than the period mean, of which 2005 and 2006 

had warmer than average S1 and S2 values (Figure 5b). There was a significant negative 

correlation between mean daily water temperature and river discharge (Pearson product-

moment correlation: r
2
 = 0.15, P<0.001). 

 

Fish-temperature and fish-discharge relationships 

Although there were no statistically significant annual-resolution relationships between 0+ 

fish biomass and biologically relevant indicators after accounting for the number of 

comparisons (Table 1), the PCA biplot revealed potentially influential drivers of 0+ fish 

biomass. The years 2003 and 2005, which had relatively high 0+ fish biomass, were 

associated with a high number of low-flow pulses (Figure 6). Mean discharge was found to 

have a significant negative effect and temperature a significant positive effect on 0+ fish 

biomass at a higher temporal resolution (Table 1). 
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The cross-correlation analyses between raw monthly biomass and monthly discharge revealed 

a noticeable annual periodicity with time lag. The cyclical association was weak (~0.3 max.) 

and relatively inconsistent, however, and likely to stem from a strong seasonal pattern in both 

series. A similar periodicity was revealed by the cross-correlation analysis between monthly 

biomass and monthly temperature. Seasonal decomposition was thus conducted on the time 

series using repeated LOESS, which revealed that peaks in biomass generally occurred with 

peaks in temperature and periods of low discharge (Figure 7). This was reflected in maximum 

cross-correlations for seasonal components of temperature, discharge and biomass at lags of 

0-3 months (Figure 8A and B). A significant negative cross-correlation was found at a lag of 

7 months between the trend components of discharge and biomass (Figure 8D). A similar lag 

was also observed in the ―residual‖ components of discharge and biomass (8 months), 

whereas no significant cross-correlation was observed between the trends and residuals of 

temperature and biomass (Figure 8C and E). 

 

Discussion 

 

Fish recruitment success is determined by many factors, including the abundance and 

condition of spawners, trophic resources, the quality and quantity of spawning and nursery 

habitats, the duration of suitable spawning periods, predation and disease, and abiotic 

conditions in the larval and juvenile periods (Larkin, 1978). In particular, water temperature 

and river discharge are known to affect the growth and recruitment of many species (Mills 

and Mann, 1985; Schlosser, 1985; Nunn et al., 2003), and therefore their contribution to 

community biomass. In the current study, the peak in biomass coincided with a 

hydrologically stable period with few high flows; EFC analysis revealed that the period was 

characterised by low flows and extreme low flows. The association of the peak in biomass 
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with low-flow pulses was also demonstrated in a PCA analysis of IHA variables. This low-

flow period was also well defined by the low number of discharge-days and the low 

cumulative difference between daily discharge and the long-term mean during the C18 period 

(between the first day to exceed 12 °C and the first to reach 18 °C). In addition, cumulative 

temperatures during the peak in biomass were higher than the long-term mean. This suggests, 

in accordance with the Inshore Retention Concept (Schiemer et al., 2001b), that warm 

periods (within species‘ physiological tolerance ranges) coinciding with sustained periods of 

low flow can be beneficial to 0+ fish biomass production in large European rivers by 

increasing the growth and survival of some, particularly warm-water cyprinid, species (Mills 

and Mann, 1985; Nunn et al., 2003; Wolter, 2007). By contrast, it is important to note that 

recruitment of cool-water species, such as salmonids, is known to respond negatively to 

sustained warm periods with low flows (Cowx et al., 1984; Riley et al., 2009). 

 

Stochastic, episodic increases in river discharge can significantly influence the survival of 0+ 

fishes and may cause densities, species richness and species composition to fluctuate yearly 

(Schlosser, 1985; Schlosser and Angermeier, 1990; Pont and Nicolas, 2001). There were no 

statistically significant annual-resolution relationships between 0+ fish biomass and 

biologically relevant indicators (IHAs and critical period variables) in this study after 

accounting for the number of comparisons. In addition, although there were statistically 

significant higher temporal-resolution (monthly) relationships (Qmean and mean temp; see 

Table 1), they likely reflected only periodic seasonal relationships between driver and 

response i.e. evolved annual co-variation in spawning/growth cycles and seasonal flow 

periodicity, and contribute little to a mechanistic understanding of aseasonal environmental 

drivers and biotic responses. However, the cross-correlation analysis of the monthly 

resolution, biomass-discharge time series revealed significant lags of 7 months in the trend 
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and 8 months in the residuals, indicating that the episodic signals within the discharge time 

series, representative of flow pulses, have an observable long-term effect on fish biomass. If 

the effects of high discharges on 0+ fish biomass were only instantaneous (i.e. displacement-

related population declines), the position of the maximum cross-correlation would be at zero 

months. Although a lag at zero months was observed in the cross-correlation of seasonal 

components, the possibility of seasonality-driven covariation with natural cycles and 

colinearity with confounding factors (e.g. temperature) cannot be ignored. There was no 

significant lag at zero months in the trend and residual components, however, thus there is no 

evidence for an instantaneous pulse-depletion effect of discharge on 0+ fish biomass, 

whereby high-flow events significantly reduce fish biomass through immediate displacement, 

in the regulated River Trent. Contrary to the influence of discharge, no long-term effect of 

temperature on fish biomass was observed. Temperature appears to have only an 

instantaneous, direct effect on fish biomass, presumably by increasing growth and survival in 

synchronisation with temperature increases. 

 

The delayed biotic response demonstrated in this study suggests that discharge has a 

significant long-term influence on the stability of fish community biomass in the regulated 

River Trent. The specific mechanisms behind the delayed response are unclear, but the 

observed lag can be explained by one or both of the following hypotheses: (1) 0+ fish 

biomass increases occur 7 months after discharge decreases due to pre-spawning factors; and 

(2) 0+ fish biomass decreases occur 7 months after discharge increases due to indirect effects 

of high discharges. Given the timing of biomass peaks (generally in July) and that the earliest 

species (perch and dace) hatch in late April (Nunn et al., 2007c), hypothesis 1 would suggest 

that factors prior to spawning are influential on 0+ biomass. It is possible that discharges 7 

months prior to a response in 0+ biomass affect adults prior to spawning, for example low 
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flows could enhance adult condition and survival, thereby increasing individual fitness and 

reproductive output. River discharge may also affect spawning and nursery habitats prior to 

spawning. Hypothesis 2, however, is perhaps the more likely explanation for the lag in 

biomass-discharge dynamics observed in this study. The environmental changes caused by 

high discharges may negatively affect habitat quality and/or prey availability, thereby 

reducing the growth and survival of 0+ fish. This is in accordance with Nunn et al. (2003), 

who suggested that, in most years, the indirect effects of high-discharge events, such as 

restricted growth caused by reductions in water temperature, discharge-associated increases 

in energy expenditure or a lack of suitable food, have more influence on year-class strength 

than does discharge-induced mortality by displacement; the exception is when floods occur 

during the early larval period. Similarly, Reichard and Jurajda (2004) found that periods of 

elevated flow had no effect on the numbers of 0+ cyprinid fishes displaced and, as in other 

studies (e.g. Pavlov, 1994; Pavlov et al., 2008; Schludermann et al., 2012; Lechner et al., 

2014), suggested that the downstream movement of 0+ cyprinids is active, rather than purely 

passive. 

 

Contrary to the potential (negative) impacts of pulse-depletion in modified systems, many 

studies have demonstrated the positive role of elevated flows, especially over-bank events, in 

enhancing fish production in natural lowland rivers by increasing useable habitat area, 

facilitating lateral movements for reproduction and refuge, and enabling the transfer of 

terrestrial resources (e.g. nutrients, woody debris and sediments) (e.g. Junk et al., 1989; 

Welcomme and Halls, 2001). This implies that habitat structure and connectivity play a 

crucial role in the dynamics of floodplain fish populations, and that fragmentation in 

constrained rivers is likely to influence the capacity of fishes to respond to high-flow events. 

Positive effects of elevated discharges on 0+ fish biomass were not observed in this study, 
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possibly due in part to the high degree of physical and hydrological modification of the River 

Trent; instream and floodplain rehabilitation would increase the diversity and area of habitats 

available to fishes, and potentially enhance production and survival during floods (Nunn et 

al., 2007b). It remains to be tested whether more natural or rehabilitated rivers demonstrate 

similar long- and short-term responses to high discharge events, but the results of this study 

support the view that high-flow events should not be seen exclusively as an acute disturbance 

to fish, which are generally adaptively resistant to flows of high magnitude, and chronic 

ecosystem alterations caused by high or low flows also appear to affect long-term resilience. 

 

It is essential to distinguish between cause and effect when describing environmental 

perturbations, to allow any undesirable effects of flow alterations to be prevented or 

ameliorated. River discharge and water temperature are extrinsic master variables known to 

explain a significant proportion of the variation in fish populations (Poff and Ward, 1989) 

but, due to evolved annual synchronicity, seasonality represents a source of deterministic bias 

when examining the effects of stochastic flow events. Isolating episodic signals from time 

series in eco-hydrological investigations is therefore advantageous, to remove any underlying 

extraneous variables, unrelated to flow events, that could generate a biomass response. This 

study has demonstrated a method to decompose flow-response time series to better evaluate 

potential relationships and their causal mechanisms, through the removal of obfuscating 

signals and the consideration of time lags. Correlations of raw variables do not account for 

omitted variable bias, as discharge, temperature and biomass oscillations are confounding and 

temporal autocorrelations within each time series generate bias lags. By contrast, the 7-8 

month lag between flow events and biomass observed in this study could only be generated 

by a genuine discharge-related effect, or improbable coincidence, rather than omitted variable 

bias. This study demonstrates both the value of long-term datasets in eco-hydrological 
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investigations (Bayley, 2002; Holmes, 2006; Nunn et al., 2010; Dodds et al., 2012; 

Lindenmayer et al., 2012) and the importance of recognising time-lagged relationships in the 

response of a biological indicator to a driver. 
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Table 1. Relationships between 0+ fish biomass (g m
–2

) in the River Trent and various 

hydrological and water temperature indices. 
 
Annual resolution indicators 

 

Mean 
Correlation with biomass 

r R
2
 Adj p n 

January mean flow 106.75     
February mean flow 101.51 –0.28 0.08 0.856 12 
March mean flow 70.87 –0.26 0.07 0.856 12 
April mean flow 73.48 –0.14 0.02 0.868 12 
May mean flow 52.47     
June mean flow 50.22     
July mean flow 53.25 –0.33 0.11 0.771 12 
August mean flow 47.24 –0.08 0.01 0.889 12 
September mean flow 42.50 –0.24 0.06 0.856 12 
October mean flow 66.42 0.10 0.01 0.889 12 
November mean flow 98.70     
December mean flow 107.41 –0.40 0.16 0.771 12 
1-day minimum flow 28.54     
3-day minimum flow 29.00     
7-day minimum flow 29.91     
30-day minimum flow 33.76     
90-day minimum flow 41.21     
1-day maximum flow 440.64     
3-day maximum flow 390.87     
7-day maximum flow 311.88     
30-day maximum flow 199.19     
90-day maximum flow 135.31     
Zero flow (days)  0     
Base flow 0.37 0.37 0.14 0.771 12 
1-day minimum flow (Julian date) 220.67     
1-day maximum flow (Julian date) 191.08 0.16 0.02 0.868 12 
Number of low pulses  10.58 0.50 0.25 0.771 12 
Median duration of low pulses (days)  5.33 –0.37 0.13 0.771 12 
Number of high pulses 12.42 –0.10 0.01 0.889 12 
Median duration of high pulses (days) 4.54     
Rise rate (m

3
/s/day) 7.49 –0.44 0.19 0.771 12 

Fall rate (m
3
/s/day) -4.98     

Number of hydrologic reversals 112.17 0.14 0.02 0.868 12 
Qmean 43.75 –0.33 0.11 0.771 12 
Qmin 28.54 –0.59 0.35 0.771 12 

Qmean (>12°C-18°C) 70.59     

Qmax (>12°C-18°C) 122.95     
Q18: no. days Q above LTM (>12°C-18°C) 12.40 –0.03 0.00 0.924 10 
Q1: cum. deviation Q from LTM (>12°C-18°C) 0.09 –0.06 0.00 0.889 10 
Qmean (>18°C-max. temp.) 43.75     
Qmax (>18°C-max. temp.) 100.90     
Qmax: no. days Q above LTM (>18°C-max. temp.) 16.09     
Q2: cum. deviation Q from LTM (>18°C-max. temp.) 1.09     
C18: no. days temp. above LTM (>12°C-18°C) 39.50 0.14 0.02 0.868 10 
S1: cum. deviation temp. from LTM (>12°C-18°C) - –0.18 0.03 0.868 10 
Cmax: no. days temp. above LTM (>18°C-max. temp.) 46.90     
S2: cum. deviation temp. from LTM (>18°C-max. temp.) -     

Monthly resolution indicators  r R
2
 p n 

Qmean  –0.31 0.09 0.023* 55 
Mean temperature (°C)  0.48 0.23 0.000** 55 

Grey cells denote variables excluded due to high correlations with other predictors, LTM = long-term mean. 

Units are m
3
s

–1
 unless stated otherwise. *Significant at the α= 0.05 level **Significant at the α= 0.001 level. 
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Figure 1. Example of hypothetical breakdown of Discharge-biomass time series (blue = 

discharge, red = fish biomass) 
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Figure 2. Location of the River Trent and a map of site locations. 
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Figure 3. PCA biplot of the contribution of species biomass to total community biomass in 

each year. Species abbreviations according to Supplementary material Table 2. The first two 

axis explain 61.84% of the variance in the model. The angles between the lines represent the 

degree to which the years are related in terms of their biomass composition, the more acute 

the angle the higher the correlation. For example 2005 and 2009 differ the most and this 

difference is driven by the contribution of roach (Rr) and gudgeon (Gg) in 2005 and bream 

(Ab) to the total 0+ biomass in 2009, as indicated by their proximity to the years on the 

biplot. 
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Figure 4. Breakdown of the hydrograph for the River Trent at Colwick from 1999-2010 into 

―Environmental Flow Components‖ (Richter & Thomas, 2007). Red = extreme low flows 

(flows that do not exceed the 10th percentile), dark green = low flows (flows that do not 

exceed the 50th percentile), blue = high flows (flows that exceed the 75th percentile), light 

green = small floods (flows with a return interval of 2 years), orange = large floods (flows 

with a return interval of 10 years). Standardised average monthly temperature (grey line) and 

0+ fish biomass (red bars) are overlaid. 
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Figure 5. A) Cumulative differences between the daily discharge and long-term period mean 

of the River Trent at Colwick during the >12°C-18°C and >18°C-max periods, 1999-2010. B) 

Cumulative differences between the daily temperature and long-term period mean of the 

River Trent at Holme Pierrepont during the (a) >12°C-18°C and (b) >18°C-max periods, 

1999-2010. 
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Figure 6. PCA biplot of a subset of 21 hydrological and temperature indices for the lower 

River Trent 1999- 2010. The two axis of the PCA biplot explain 45.33% of the variance in 

the model. In the scaling of this biplot, angles between lines (variables) represent 

correlations, with acute angles representing high correlations (see Jollife (2002)), the 

distances between years represents Mahanalobis distances and the projection of years over 

lines indicates whether the variable had high or low values in those years. 
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Figure 7. Overview of the seasonal component (A), long term trend component (B) and 

residuals of time series of monthly discharge (m3 s–1), temperature (°C) and 0+ fish biomass 

(g m–2) in the lower River Trent, 1999-2010. 
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Figure 8. Cross-correlations between the seasonal components (A,B), the 

long-term trend components (C,D) and residuals (E,F) of monthly 

temperature (°C) and discharge (m3 s–1) vs. 0+fish biomass (g m-2) in 

the lower River Trent. Cross-correlations with prewhitening are plotted in 

grey, red bars indicate significant correlations at the according lags. The 

dashed line indicates the significance threshold at α=0.05. 


