133 research outputs found

    Nanostructured thermoelectric generator for energy harvesting

    No full text
    This paper presents the development processes towards a new generation of nanostructured thermoelectric generators for power harvesting from small temperature gradients by using a combination of traditional silicon microfabrication techniques, electroplating and submicron ion-track nanolithography. Polyimide nanotemplates with pore diameters ranging from 30nm to 120 nm were fabricated. Preliminary results for Bi2Te3 nanowires (50 and 120 nm diameter) electroplated into polycarbonate ion-track commercial membranes are presented. Bi2Te3 nanowires of R ̄ 3m structure, with preferential orientation in the (015) and (110) crystallographic plans with nearly stoichiometric composition were electroplated. The fine-grained observed microstructure (6-10 nm) and (110) crystalline orientation appear extremely promising for improving thermoelectric material properties

    Ion transport and selectivity in nanopores with spatially inhomogeneous fixed charge distributions

    Get PDF
    Polymeric nanopores with fixed charges show ionic selectivity when immersed in aqueous electrolyte solutions. The understanding of the electrical interaction between these charges and the mobile ions confined in the inside nanopore solution is the key issue in the design of potential applications. The authors have theoretically described the effects that spatially inhomogeneous fixed charge distributions exert on the ionic transport and selectivity properties of the nanopore. A comprehensive set of one-dimensional distributions including the skin, core, cluster, and asymmetric cases are analyzed on the basis of the Nernst-Planck equations. Current-voltage curves, nanopore potentials, and transport numbers are calculated for the above distributions and compared with those obtained for a homogeneously charged nanopore with the same average fixed charge concentration. The authors have discussed if an appropriate design of the spatial fixed charge inhomogeneity can lead to an enhancement of the transport and selectivity with respect to the homogeneous nanopore case. Finally, they have compared the theoretical predictions with relevant experimental [email protected] [email protected]

    Ionic conduction, rectification, and selectivity in single conical nanopores

    Get PDF
    Modern track-etching methods allow the preparation of membranes containing a single charged conical nanopore that shows high ionic permselectivity due to the electrical interactions of the surface pore charges with the mobile ions in the aqueous solution. The nanopore has potential applications in electrically assisted single-particle detection, analysis, and separation of biomolecules. We present a detailed theoretical and experimental account of the effects of pore radii and electrolyte concentration on the current-voltage and current-concentration curves. The physical model used is based on the Nernst-Planck and Poisson equations. Since the validity of continuum models for the description of ion transport under different voltages and concentrations is recognized as one of the main issues in the modeling of future applications, special attention is paid to the fundamental understanding of the electrical interactions between the nanopore fixed charges and the mobile charges confined in the reduced volume of the inside [email protected]

    Photoelectric Emission from Interstellar Dust: Grain Charging and Gas Heating

    Full text link
    We model the photoelectric emission from and charging of interstellar dust and obtain photoelectric gas heating efficiencies as a function of grain size and the relevant ambient conditions. Using realistic grain size distributions, we evaluate the net gas heating rate for various interstellar environments, and find less heating for dense regions characterized by R_V=5.5 than for diffuse regions with R_V=3.1. We provide fitting functions which reproduce our numerical results for photoelectric heating and recombination cooling for a wide range of interstellar conditions. In a separate paper we will examine the implications of these results for the thermal structure of the interstellar medium. Finally, we investigate the potential importance of photoelectric heating in H II regions, including the warm ionized medium. We find that photoelectric heating could be comparable to or exceed heating due to photoionization of H for high ratios of the radiation intensity to the gas density. We also find that photoelectric heating by dust can account for the observed variation of temperature with distance from the galactic midplane in the warm ionized medium.Comment: 50 pages, including 18 figures; corrected title and abstract field

    Colouration in amphibians as a reflection of nutritional status : the case of tree frogs in Costa Rica

    Get PDF
    Colouration has been considered a cue for mating success in many species; ornaments in males often are related to carotenoid mobilization towards feathers and/or skin and can signal general health and nutrition status. However, there are several factors that can also link with status, such as physiological blood parameters and body condition, but there is not substantial evidence which supports the existence of these relationships and interactions in anurans. This study evaluated how body score and blood values interact with colouration in free-range Agalychnis callidryas and Agalychnis annae males. We found significant associations between body condition and plasmatic proteins and haematocrit, as well as between body condition and colour values from the chromaticity diagram. We also demonstrated that there is a significant relation between the glucose and plasmatic protein values that were reflected in the ventral colours of the animals, and haematocrit inversely affected most of those colour values. Significant differences were found between species as well as between populations of A. callidryas, suggesting that despite colour variation, there are also biochemical differences within animals from the same species located in different regions. These data provide information on underlying factors for colouration of male tree frogs in nature, provide insights about the dynamics of several nutrients in the amphibian model and how this could affect the reproductive output of the animals

    An ab initio and AIM investigation into the hydration of 2-thioxanthine

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Hydration is a universal phenomenon in nature. The interactions between biomolecules and water of hydration play a pivotal role in molecular biology. 2-Thioxanthine (2TX), a thio-modified nucleic acid base, is of significant interest as a DNA inhibitor yet its interactions with hydration water have not been investigated either computationally or experimentally. Here in, we reported an <it>ab initio </it>study of the hydration of 2TX, revealing water can form seven hydrated complexes.</p> <p>Results</p> <p>Hydrogen-bond (H-bond) interactions in 1:1 complexes of 2TX with water are studied at the MP2/6-311G(d, p) and B3LYP/6-311G(d, p) levels. Seven 2TX<sup>...</sup>H<sub>2</sub>O hydrogen bonded complexes have been theoretically identified and reported for the first time. The proton affinities (PAs) of the O, S, and N atoms and deprotonantion enthalpies (DPEs) of different N-H bonds in 2TX are calculated, factors surrounding why the seven complexes have different hydrogen bond energies are discussed. The theoretical infrared and NMR spectra of hydrated 2TX complexes are reported to probe the characteristics of the proposed H-bonds. An improper blue-shifting H-bond with a shortened C-H bond was found in one case. NBO and AIM analysis were carried out to explain the formation of improper blue-shifting H-bonds, and the H-bonding characteristics are discussed.</p> <p>Conclusion</p> <p>2TX can interact with water by five different H-bonding regimes, N-H<sup>...</sup>O, O-H<sup>...</sup>N, O-H<sup>...</sup>O, O-H<sup>...</sup>S and C-H<sup>...</sup>O, all of which are medium strength hydrogen bonds. The most stable H-bond complex has a closed structure with two hydrogen bonds (N(7)-H<sup>...</sup>O and O-H<sup>...</sup>O), whereas the least stable one has an open structure with one H-bond. The interaction energies of the studied complexes are correlated to the PA and DPE involved in H-bond formation. After formation of H-bonds, the calculated IR and NMR spectra of the 2TX-water complexes change greatly, which serves to identify the hydration of 2TX.</p

    Differential effects of testosterone, dihydrotestosterone and estradiol on carotenoid deposition in an avian sexually selected signal

    Get PDF
    Recent studies have demonstrated that carotenoid-based traits are under the control of testosterone (T) by up-regulation of carotenoid carriers (lipoproteins) and/or tissue-specific uptake of carotenoids. T can be converted to dihydrotestosterone (DHT) and estradiol (E2), and variation in conversion rate may partly explain some contradictory findings in the literature. Moreover, most studies on the effect of T on sexual signals have focused on the male sex only, while in many species females show the same signal, albeit to a lesser extent. We studied the effects of T, DHT, and E2 treatment in male and female diamond doves Geopelia cuneata in which both sexes have an enlarged red eye ring, which is more pronounced in males. We first showed that this periorbital ring contains very high concentration of carotenoids, of which most are lutein esters. Both T and DHT were effective in enhancing hue, UV-chroma and size in both sexes, while E2 was ineffective. However, E2 dramatically increased the concentration of circulating lipoproteins. We conclude that in both sexes both color and size of the secondary sexual trait are androgen dependent. The action of androgens is independent of lipoproteins regulation. Potential mechanisms and their consequences for trade-off are discussed
    corecore