339 research outputs found

    Fatigue in U.S. Astronauts Onboard the International Space Station: Environmental Factors, Operational Impacts, and Implementation of Countermeasures

    Get PDF
    Since 2000, US astronauts have been supporting missions up to a six month duration on the International Space Station (ISS). Crewmembers have experienced fatigue for reasons similar to military deployments. Astronauts experience psychological stressors such as heavy workloads, extended duty periods, circadian misalignment, inadequate/ineffective sleep, and loss of the environmental cues of a gravity environment. Complicating the psychological stressors are environmental factors; distracting background noise, unexpected and variable mission schedules, unfavorable thermal control, elevated CO2 levels, and an unusual sleep environment with schedules that impinge on presleep periods. Physiological contributors to poor sleep and fatigue include a cephalad fluid shift and back pain. Restful sleep is further challenged due to a lack of gravityrelated proprioceptive cues and need for restraints. The term "space fog" has been used by astronauts to describe a phenomenon of forgetfulness, slowed reaction time and transient confusion while trying to complete tasks. There is a distinct temporal correlation with arrival on the Space Station and the onset of slowed cognitive skills and a spontaneous resolution that may take up to 6 weeks. The Genesis of this phenomenon may be chronic fatigue secondary to transitioning from a planar environment to a 360deg microgravity perspective. Recently, countermeasures to improve sleep duration and quality in astronauts on the ISS have been instituted with moderate degrees of success as measured by selfreaction time (psychomotor vigilance task testing), actigraphy, and subjective reports. Judicious use of stimulants and hypnotics, light therapy, controlled sleep periods and sleep shifting and reducing ambient CO2 levels are a few of the most promising countermeasures being used in space to improve sleep and reduce fatigue

    Oro-Nasal Mask Versus Two-Way Non-Rebreathing Valves for Maximal Aerobic Capacity Testing in Astronauts

    Get PDF
    Astronauts complete maximal aerobic capacity (VO2pk) testing as part of their annual fitness assessment (AFA) as well as several times once assigned to an International Space Station mission. Historically, the 2-Way T-Shape Non-Rebreathing valve with a mouthpiece and nose clip (Mouthpiece) has been used in these tests. The testing procedure was updated to use the oro-nasal mask (Mask) for the AFA starting in June 2017. Astronauts who used the mask during their AFA requested it be certified to be used for all mission associated tests. Considering the criticality of the data and the schedule constraints of astronauts, it is imperative that the requested hardware change provide data with equivalent reliability and repeatability as provided by the mouthpiece. PURPOSE: To assess the reliability and validity of mask vs. mouthpiece by comparing submaximal and VO2pkdata within subjects (approximately 1 year apart). METHODS: Each of 17 active astronauts completed a VO (sub 2pk) test with the mouthpiece (first) and the mask (second) for their AFA. The VO (sub 2pk) test was conducted on a cycle ergometer with a metabolic cart. The nominal protocol started with a 3-minute warm-up at 50 Watts (W) and increased 25W every minute until volitional fatigue (Light: 45W start; 15W increase). The VO (sub 2pk)s were compared between tests and the expected day-to-day variation (plus or minus 5 percent) was used as the threshold for determining agreement between tests. Submaximal values were plotted and evaluated visually for deviations between mask and mouthpiece. RESULTS: VO (sub 2pk) values were more than 5 percent different, despite similar test times, between mouthpiece and mask in 6 of 17 comparisons, 3 of which were higher with the mask (9.0 plus or minus 5.9 percent) while 3 were lower (minus10.8 plus or minus 2.0 percent) with the mask. The submaximal data did not indicate a leak in either apparatus during these tests. An Astronaut Strength & Conditioning Rehabilitation specialist confirmed that the measured differences in VO (sub 2pk) of these 6 astronauts was consistent with observed changes in exercise habits during the year that separated the two tests. CONCLUSION: After being presented with the results of this data mining effort the mask was accepted for use in all tests, excepting that, if a leak is detected without resolve, the test will be repeated (if schedule allows) and remaining tests will be completed with the mouthpiece

    Shoulder Injuries in US Astronauts Related to EVA Suit Design

    Get PDF
    Introduction: For every one hour spent performing extravehicular activity (EVA) in space, astronauts in the US space program spend approximately six to ten hours training in the EVA spacesuit at NASA-Johnson Space Center's Neutral Buoyancy Lab (NBL). In 1997, NASA introduced the planar hard upper torso (HUT) EVA spacesuit which subsequently replaced the existing pivoted HUT. An extra joint in the pivoted shoulder allows increased mobility but also increased complexity. Over the next decade a number of astronauts developed shoulder problems requiring surgical intervention, many of whom performed EVA training in the NBL. This study investigated whether changing HUT designs led to shoulder injuries requiring surgical repair. Methods: US astronaut EVA training data and spacesuit design employed were analyzed from the NBL data. Shoulder surgery data was acquired from the medical record database, and causal mechanisms were obtained from personal interviews Analysis of the individual HUT designs was performed as it related to normal shoulder biomechanics. Results: To date, 23 US astronauts have required 25 shoulder surgeries. Approximately 48% (11/23) directly attributed their injury to training in the planar HUT, whereas none attributed their injury to training in the pivoted HUT. The planar HUT design limits shoulder abduction to 90 degrees compared to approximately 120 degrees in the pivoted HUT. The planar HUT also forces the shoulder into a forward flexed position requiring active retraction and extension to increase abduction beyond 90 degrees. Discussion: Multiple factors are associated with mechanisms leading to shoulder injury requiring surgical repair. Limitations to normal shoulder mechanics, suit fit, donning/doffing, body position, pre-existing injury, tool weight and configuration, age, in-suit activity, and HUT design have all been identified as potential sources of injury. Conclusion: Crewmembers with pre-existing or current shoulder injuries or certain anthropometric body types should conduct NBL EVA training in the pivoted HUT

    Fatigue in U.S. Astronauts Onboard the International Space Station: Environmental factors, Operational Impacts, and Implementation of Countermeasures

    Get PDF
    Crewmembers have experienced fatigue for reasons similar to military deployments. Astronauts experience psychological stressors such as: heavy workloads, extended duty periods, circadian misalignment, inadequate/ineffective sleep, distracting background noise, unexpected and variable mission schedules, unfavorable thermal control, unusual sleep environment with schedules that impinge on presleep periods

    Stratified spatiotemporal chaos in anisotropic reaction-diffusion systems

    Full text link
    Numerical simulations of two dimensional pattern formation in an anisotropic bistable reaction-diffusion medium reveal a new dynamical state, stratified spatiotemporal chaos, characterized by strong correlations along one of the principal axes. Equations that describe the dependence of front motion on the angle illustrate the mechanism leading to stratified chaos

    The Apollo Medical Operations Project: Recommendations to Improve Crew Health and Performance for Future Exploration Missions and Lunar Surface Operations

    Get PDF
    Medical requirements for the future Crew Exploration Vehicle (CEV), Lunar Surface Access Module (LSAM), advanced Extravehicular Activity (EVA) suits and Lunar habitat are currently being developed. Crews returning to the lunar surface will construct the lunar habitat and conduct scientific research. Inherent in aggressive surface activities is the potential risk of injury to crewmembers. Physiological responses and the operational environment for short forays during the Apollo lunar missions were studied and documented. Little is known about the operational environment in which crews will live and work and the hardware will be used for long-duration lunar surface operations. Additional information is needed regarding productivity and the events that affect crew function such as a compressed timeline. The Space Medicine Division at the NASA Johnson Space Center (JSC) requested a study in December 2005 to identify Apollo mission issues relevant to medical operations that had impact to crew health and/or performance. The operationally oriented goals of this project were to develop or modify medical requirements for new exploration vehicles and habitats, create a centralized database for future access, and share relevant Apollo information with the multiple entities at NASA and abroad participating in the exploration effort

    Paediatric tube-feeding: An agenda for care improvement and research.

    Full text link
    This article presents an agenda to improve the care and wellbeing of children with paediatric feeding disorder who require tube feeding (PFD-T). PFD-T requires urgent attention in practice and research. Priorities include: routine collection of PFD-T data in health-care records; addressing the tube-feeding lifecycle; and reducing the severity and duration of disruption caused by PFD-T where possible. This work should be underpinned by principles of involving, respecting and connecting families

    Recommendations for Exploration Space Medicine from the Apollo Medical Operations Project

    Get PDF
    Introduction: A study was requested in December, 2005 by the Space Medicine Division at the NASA-Johnson Space Center (JSC) to identify Apollo mission issues relevant to medical operations that had impact to crew health and/or performance. The objective was to use this new information to develop medical requirements for the future Crew Exploration Vehicle (CEV), Lunar Surface Access Module (LSAM), Lunar Habitat, and Advanced Extravehicular Activity (EVA) suits that are currently being developed within the exploration architecture. Methods: Available resources pertaining to medical operations on the Apollo 7 through 17 missions were reviewed. Ten categories of hardware, systems, or crew factors were identified in the background research, generating 655 data records in a database. A review of the records resulted in 280 questions that were then posed to surviving Apollo crewmembers by mail, face-to-face meetings, or online interaction. Response analysis to these questions formed the basis of recommendations to items in each of the categories. Results: Thirteen of 22 surviving Apollo astronauts (59%) participated in the project. Approximately 236 pages of responses to the questions were captured, resulting in 107 recommendations offered for medical consideration in the design of future vehicles and EVA suits based on the Apollo experience. Discussion: The goals of this project included: 1) Develop or modify medical requirements for new vehicles; 2) create a centralized database for future access; and 3) take this new knowledge and educate the various directorates at NASA-JSC who are participating in the exploration effort. To date, the Apollo Medical Operations recommendations are being incorporated into the exploration mission architecture at various levels and a centralized database has been developed. The Apollo crewmembers input has proved to be an invaluable resource, prompting ongoing collaboration as the requirements for the future exploration missions continue to evolve and be refined

    Stable Heterogeneity for the Production of Diffusible Factors in Cell Populations

    Get PDF
    The production of diffusible molecules that promote survival and growth is common in bacterial and eukaryotic cell populations, and can be considered a form of cooperation between cells. While evolutionary game theory shows that producers and non-producers can coexist in well-mixed populations, there is no consensus on the possibility of a stable polymorphism in spatially structured populations where the effect of the diffusible molecule extends beyond one-step neighbours. I study the dynamics of biological public goods using an evolutionary game on a lattice, taking into account two assumptions that have not been considered simultaneously in existing models: that the benefit of the diffusible molecule is a non-linear function of its concentration, and that the molecule diffuses according to a decreasing gradient. Stable coexistence of producers and non-producers is observed when the benefit of the molecule is a sigmoid function of its concentration, while strictly diminishing returns lead to coexistence only for very specific parameters and linear benefits never lead to coexistence. The shape of the diffusion gradient is largely irrelevant and can be approximated by a step function. Since the effect of a biological molecule is generally a sigmoid function of its concentration (as described by the Hill equation), linear benefits or strictly diminishing returns are not an appropriate approximations for the study of biological public goods. A stable polymorphism of producers and non-producers is in line with the predictions of evolutionary game theory and likely to be common in cell populations

    Fast flowing populations are not well mixed

    Get PDF
    In evolutionary dynamics, well-mixed populations are almost always associated with all-to-all interactions; mathematical models are based on complete graphs. In most cases, these models do not predict fixation probabilities in groups of individuals mixed by flows. We propose an analytical description in the fast-flow limit. This approach is valid for processes with global and local selection, and accurately predicts the suppression of selection as competition becomes more local. It provides a modelling tool for biological or social systems with individuals in motion.Comment: 19 pages, 8 figure
    corecore