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Abstract

The production of diffusible molecules that promote survival and growth is common in bacterial and eukaryotic cell
populations, and can be considered a form of cooperation between cells. While evolutionary game theory shows that
producers and non-producers can coexist in well-mixed populations, there is no consensus on the possibility of a stable
polymorphism in spatially structured populations where the effect of the diffusible molecule extends beyond one-step
neighbours. I study the dynamics of biological public goods using an evolutionary game on a lattice, taking into account
two assumptions that have not been considered simultaneously in existing models: that the benefit of the diffusible
molecule is a non-linear function of its concentration, and that the molecule diffuses according to a decreasing gradient.
Stable coexistence of producers and non-producers is observed when the benefit of the molecule is a sigmoid function of
its concentration, while strictly diminishing returns lead to coexistence only for very specific parameters and linear benefits
never lead to coexistence. The shape of the diffusion gradient is largely irrelevant and can be approximated by a step
function. Since the effect of a biological molecule is generally a sigmoid function of its concentration (as described by the
Hill equation), linear benefits or strictly diminishing returns are not an appropriate approximations for the study of
biological public goods. A stable polymorphism of producers and non-producers is in line with the predictions of
evolutionary game theory and likely to be common in cell populations.

Citation: Archetti M (2014) Stable Heterogeneity for the Production of Diffusible Factors in Cell Populations. PLoS ONE 9(9): e108526. doi:10.1371/journal.pone.
0108526

Editor: James A.R. Marshall, University of Sheffield, United Kingdom

Received June 18, 2014; Accepted August 28, 2014; Published September 30, 2014

Copyright: � 2014 Marco Archetti. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Data Availability: The authors confirm that all data underlying the findings are fully available without restriction. All relevant data are within the paper and its
Supporting Information files.

Funding: This work was supported by the Natural Environment Research Council grant NE/H015701/1 (www.nerc.ac.uk). The funder had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The author has declared that no competing interests exist.

* Email: m.archetti@uea.ac.uk

Introduction

Cooperation for the production of diffusible molecules is

commonly observed in cell populations, from bacteria to

eukaryotes [1]: bacteria, for example, produce molecules that

contribute to population growth (like pyocyanin [2] and

pyoverdine [3]), that enable the buildup of biofilms [4] or that

confer resistance to antibiotics [5]; yeast cells produce invertase

that catalyzes the hydrolysis of sucrose [6], and cancer cells

produce growth factors that contribute to tumour expansion [7].

Because the effect of diffusible molecules is not limited to the

producer cells, a mutant cell not producing the molecule can still

benefit from the presence of its neighbour producers. The free-

rider advantage enjoyed by non-producer cells may lead to an

increase in their frequency in the population and drive producers

to extinction, with a consequent reduction in average fitness for

the population - similar to what is often referred to as ‘‘the tragedy

of the commons’’ [8]. It is understood, however, that because this

free-rider advantage is frequency-dependent, if the benefit

conferred by the public good is non-linear, the dynamics is

generally more complex and in well-mixed populations it can lead

to a stable coexistence of producers and non-producers [9].

Whether this is also the case in spatially structured populations,

however, is unclear.

In the study of public goods games in spatially structured

populations it is usually assumed [10] that an individual’s action

affects only the fitness of individuals one node away and that an

individual’s fitness is the sum of all the payoffs accumulated in all

the groups she belongs to (all the groups formed by the one-step

neighbours of her one-step neighbours). This is reasonable for

interactions in human social networks, but not for cellular

networks, in which molecules typically diffuse beyond a cell’s

one-step neighbours, and in which the benefit for a cell is a

function of the number of producer cells within the diffusion range

of the molecule. In order to study diffusible public goods,

therefore, one must decouple the interaction neighbourhood (the

group playing the game, defined by the diffusion range of the

molecule) and the update neighbourhood (the one-step neigh-

bours). While such models have been used to study a simple two-

person game with a linear benefit function (the prisoner’s

dilemma) on a regular lattice [11,12] only recently it has been

used to study the dynamics of multi-player public goods games

(which are appropriate for the study of biological molecules) and

there seems to be no consensus on the conclusions of these studies.

Borenstein et al. [13] showed that in a 2-D model with diffusion

and linear benefits producers and non-producers can never

coexist. Scheuring [14] showed, instead, stable coexistence in a

1-D model with concave benefits (diminishing returns) and even
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(although rarely) with linear benefits, depending on the initial

conditions of the system. Archetti [15] showed that coexistence is

the typical outcome of the dynamics in a 2-D model with diffusion,

but did not take into account the fact that the efficacy of the

diffusible molecule may decline with the distance form the source.

Allen et al. [16] studied a model with diffusion and linear benefits,

but did not investigate the possibility of coexistence of the two

types, since in their finite stochastic population one of the strategies

eventually goes to fixation (it is known, however, that in the

presence of a stochastically stable polymorphism, coexistence in

large populations is possible since fixation time increases

exponentially with population size [17]).

A number of different assumptions in these studies [13–16] can

account for the different conclusions about the possibility of a

stable polymorphism. I will analyse two assumptions that seem the

most prominent differences in the 2-D models described above:

the shape of the diffusion gradient of the molecule (the efficacy of

the molecule as a function of the distance from the producer cell)

and the shape of the benefit function (the amount of public good

produced as a function of the fraction of producers). In Borenstein

et al. [13], Allen et al. [16] and Scheuring [14] the diffusion

gradient is a smooth decreasing function, whereas in Archetti [15]

the diffusion gradient is a step function. In Borenstein et al. [13]

and Allen et al. [16] the benefit function is linear, whereas

Scheuring [14] uses both linear and concave benefits, and Archetti

[15] uses a variety of shapes, including linear, concave and sigmoid

benefits. It is possible that the lack of a stable polymorphism

reported by Borenstein et al. [13] is due to the fact that the benefit

used in their model is linear, or it is possible that the stable

polymorphism observed by Archetti [15] is due to the fact that the

diffusion gradient in his model is a step function. Scheuring [14]

showed that concave benefits can lead to coexistence, a result that

is in contrast with both Borenstein et al. [13] and Archetti [15] but

is not necessarily applicable to 2-D models and sigmoid benefit

functions.

I will use a 2-D model that takes into account a variety of non-

liner benefits (not analysed by Borenstein et al. [13]) and of

smooth diffusion gradients (not used by Archetti [15]), extending

therefore to 2-D and sigmoid benefits the results obtained by

Scheuring [14] for linear and concave benefits in a 1-D model.

Figure 1. Realistic Hill coefficients lead to coexistence of producers and non-producers. For different benefit functions B(x) and gradients
of diffusion G(i), the fraction of producers over time is show for c = 0.05 and c = 0.15. The lattices show the population after 1000 generations per cell.
A: Linear benefit (s = 1, h = 0.5) with a diffusion gradient (z = 3, d = 0, D = 7). B: Sigmoid benefit (s = 20, h = 0.5) with no diffusion gradient (z = 1000,
d = 3, D = 6). C: Sigmoid benefit (s = 20, h = 0.5) with a diffusion gradient (z = 3, d = 0, D = 7).
doi:10.1371/journal.pone.0108526.g001
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The results of this extended model will help clarify what

assumptions (diffusion gradient or non-linear benefits) are essential

for an analysis of the problem, and whether a stable polymorphism

is indeed possible with public goods involving diffusible biological

molecules.

The model

Topology
Individual cells occupy all individual nodes of a planar graph, a

regular 30630 square lattice in which each node has four

neighbours (Von Neumann neighbourhood) and the opposing

edges are connected to form a toroidal network, in order to avoid

edge effects. Differently from the standard approach (in which an

individual’s group is limited to her one-step neighbours and an

individual plays multiple games centred on each of her neighbours

[10]), here the interaction neighbourhood and the update

neighbourhood are decoupled (the approach used by Archetti

[15] and by Borenstein et al. [13]): a cell’s group (of size n) is not

limited to her one-step neighbours but is defined by the diffusion

range D of the molecule. Group size for a cell is given by the

number of cells within D nodes from that cell; in the Von

Neumann neighbourhood, n = 2D(D+1)+1.

While in a model with a fixed diffusion range (a step function, in

which the molecule is 100% effective up to a fixed distance from

the source, and completely ineffective beyond that range) a cell’s

payoff can be determined simply by the number of producer cells

within a given range from that cell, in a model with a diffusion

gradient each cell receives contributions from other producer cells

within a diffusion range D of the molecule, each contribution

weighted by the distance i (the number of nodes) from that cell

according to the following function:

G ið Þ~1{ g ið Þ{g 0ð Þ½ �= g Dð Þ{g 0ð Þ½ �

where

g ið Þ~1= 1ze{z i{dð Þ=D
h i

The relative value of d and D determines the shape of the

diffusion gradient, which is always decreasing but can be concave

(d = D), convex (d,,D) or sigmoid (intermediate values of d,D).

For example, if d = D/2 and there are six producer cells all d
nodes away from a focal cell (i = d for all producers), G(d) = 1/2,

that is, only half of each producer’s contribution is available for the

focal cell, hence the weighted number of producers (the sum of all

the contributions) in that focal cell’s group is three. The parameter

z controls the steepness of the gradient at the inflection point: zR0

models a linear gradient; zR‘ models a step function equivalent

to the one used by Archetti [15].

The game
We assume, as is standard, that there are two types of cells,

producers and non-producers. Producers pay a cost c that non-

producers do not pay (0,c,1). All cells (producers and non-

producers) benefit from the public good produced by all the cells in

their group. The benefit function is.

B xð Þ~ b xð Þ{b 0ð Þ½ �= b 1ð Þ{b 0ð Þ½ �

where

Figure 2. Different diffusion gradients allow coexistence of producers and non-producers. For different benefit functions B(x) and
gradients of diffusion G(i), the contour plots show the fraction of producers at the stable mixed equilibrium (xeq) as a function of h (the inflection
point of the benefit function) and c (the cost of producing the molecule). A: Linear benefit (s = 1, h = 0.5; any of the diffusion gradients in B-E). B-E:
Sigmoid benefit (s = 20). B: Fixed diffusion range with no diffusion gradient (d = 3, D = 6, z = 1000). C: Sigmoid diffusion gradient (d = 3, D = 6, z = 10).
D: Linear diffusion gradient (d = 3, D = 6, z = 1). E: Convex diffusion gradient (d = 0, D = 7, z = 3).
doi:10.1371/journal.pone.0108526.g002
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b xð Þ~1= 1zes(h{x)
� �

is a function of the weighted fraction of producers x in the group

that is, the weighted number of producers j in the group divided by

group size n (see ‘‘Topology’’). The parameter h controls the

position of the inflection point (hR1 gives strictly increasing

returns and hR0 strictly diminishing returns) and the parameter s
controls the steepness of the function at the inflection point (sR‘

models a steep sigmoid function that is essentially an on/off switch;

sR0 models linear benefits) [18]. B( j) is a simple normalisation of

the logistic function b( j) (without the normalisation, low values of s
would yield constant benefits rather than linear increasing

benefits). While input-output functions in biochemistry are often

described by the Hill equation [19,20], we use this normalised

logistic function because it enables to model not only sigmoid

benefits but also linear and concave benefits, which are used by

Scheuring [14] and Archetti [15], discussed by Borenstein [13],

and used in models of public goods games in well-mixed

populations [9].

A cell’s payoff is a function of the amount of factor produced by

the group she belongs to. I use a birth-death process equivalent to

the one used by Archetti [15] and by Borenstein et al. [13]. The

process starts with a number of non-producer cells placed on the

graph; at each round a cell x with a payoff Px is selected (at

random) for update (death); a cell y (with a payoff Py) is then

chosen among x’s neighbours. Two types of update are used: in the

deterministic case, if Px.Py, no update occurs, while if Px,Py, x
will adopt y’s strategy (unconditional imitation); in the stochastic

case, replacement occurs with a probability given by (Py-Px)/M,

where M ensures the proper normalization and is given by the

maximum possible difference between the payoffs of x and y [10].

Results are obtained averaging the final 200 of 1000 generations

per cell, averaged over 10 different runs.

Figure 3. Diffusion gradients do not affect changes in population structure. Changes in degree centrality and closeness centrality over time
are shown for the producer and non-producer subgraphs. A: Fixed diffusion range with no diffusion gradient (d = 3, D = 6, z = 1000). B: Linear
diffusion gradient (d = 3, D = 6, z = 1).
doi:10.1371/journal.pone.0108526.g003
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Results

Sigmoid benefits lead to coexistence, with or without a
diffusion gradient

First, I checked that the results of two degenerate versions of the

model correspond to the ones reported previously: with a linear

benefit and a smooth diffusion gradient [13], no coexistence of

producers and non-producers is observed [Figure 1A]; with no

diffusion gradient and a non-linear benefit [15], producers and

non-producers can coexist [Figure 1B]. These results therefore

are in line with the two simpler models [13,15] that led to

opposing results. When benefits are non-linear, replacing the step

function diffusion range [15] with a more realistic diffusion

gradient [13] still leads to a coexistence of producers and non-

producers [Figure 1C]. The shape of the benefit function,

Figure 4. Why only non-linear benefits can lead to coexistence of producers and non-producers. The fitness of producers (black curve)
and non producers (grey curve) as a function of the fraction (x) of producers within the diffusion range of the molecule, for different steepness
coefficients (s). The arrows show the direction of the dynamics. The shaded area shows the basin of attraction of the internal stable equilibrium (if it
exists). n = 20, h = 0.5. A: The benefit B(x) of the molecule is an almost linear (s = 0.001) function of its concentration. B: The benefit B(x) is a sigmoid
(s = 5) function of its concentration. C: The benefit function is essentially a step function (s = 20).
doi:10.1371/journal.pone.0108526.g004
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therefore, seems crucial for the outcome of the dynamics, whereas

the diffusion gradient seems irrelevant.

The result is robust and can hold even for concave
benefits

To check the robustness of the previous conclusion I analyse the

dynamics under a variety of diffusion gradients and benefit

function. While linear benefits always lead to the extinction of one

of the two types [Figure 2A], as shown by Borenstein et al. [13],

non-linear benefits can lead to coexistence under a wide range of

parameters if the cost is not too high [Figure 2B-E], in line with

previous results in well-mixed populations [9], and as shown by

Archetti [15] for diffusible molecules in spatially structured

populations. The type of diffusion gradient is largely irrelevant,

whereas the shape of the benefit function is the major determinant

of the dynamics.

While Borenstein et al. [13] analyse linear benefits, they suggest

that concave benefits, like linear benefits, would not lead to

coexistence. With diffusion gradients, however, concave benefits

(diminishing returns) can actually lead to a stable polymorphism,

even though under a much more limited parameter range than

with sigmoid benefits [Figure 2B–E]. Therefore diffusion gradi-

ents are even more conductive to polymorphic equilibria than the

simple diffusion range (step function) used by Archetti [15].

No effect of diffusion gradients on population structure
Analysing changes in the topology of the subgraphs of producers

and non-producers [Figure 3] reveals that the shape of the

diffusion gradients does not affect significantly the spatial dynamics

of the population. The degree centrality of the non-producer

subgraph is only slightly lower (that is, non-producers have fewer

neighbours in their clusters) when the molecule has a smooth

decreasing diffusion gradient than when the diffusion is a step

function; intermediate cases (not shown) lead to similar negligible

differences. The closeness centrality (the inverse of the sum of the

distance to all other vertices) is slightly higher for non producers

and lower for producers (that is, non-producer clusters tend to be

smaller and producer cluster bigger), but the differences are

negligible. In short, whether diffusion is modelled as a gradient or

not does not affect significantly the topology of the two subgraphs.

Rationale of the results
The logic of non-linear benefits on the dynamics of public goods

is explained in Figure 4 (see also previous discussions for well-

mixed populations [9,18]: If the benefit of the molecule is a linear

function of its concentration (sR0), either producers or non-

producers have a higher fitness for any frequency of producers,

depending only on the relative cost/benefit of producing the

molecule (in sizeable groups, for reasonable costs producers will

always have a disadvantage, this results in what we usually refer to

as ‘‘N-person Prisoner’s Dilemma’’, and hence to what is generally

referred to as a ‘‘tragedy of the commons’’ [8]). If benefits are non-

linear, however (larger s) and the cost c is not too high, a stable

polymorphism is possible. Note that large s values (steep benefit

functions) allow stable polymorphic equilibria for larger values of

c, but they make the population less robust to random fluctuations

in the fraction of producers, that is, to a smaller basin of attraction

for the stable polymorphic equilibrium [Figure 4].

The above argument is valid for well-mixed populations. In

spatially structured populations the logic requires one further step.

The crucial point is that, while in a well-mixed population the

fraction of producers in the group is approximately the same as the

frequency in the population (because new groups are formed at

each generation), this is not the case in a spatially structured

population, where the local fraction of producers can be much

lower or higher than in the rest of the population. Consider a

cluster of non-producers in a population of producers [Fig-
ure 5A]: the group defined by the diffusion range of the molecules

produced by a cell at the edge between producers and non-

producers is made by approximately half producers and half non-

producers (if the diffusion range and the clusters are large enough);

if non-producers have a higher fitness than producers (which is

always the case if benefits are linear and c is not too small), the

non-producer cluster will expand and the producer/non-producer

front will move ahead; the process will go on with new groups (new

producer/non-producer edges) until the whole population is made

of non-producers. The same will happen when benefits are

concave or convex, but not when benefits are sigmoid [Fig-
ure 5B]. If population structure is more complex (that is, if there

is more than one cluster of non-producers in a population of

producers) the intuition provided by Figure 5 fails, although it is

clear that with concave or convex benefits (h close 0 or close to 1 in

Figure 2) producers will ultimately go to extinction, whereas with

sigmoid benefits the position of producer and non-producer cells

will fluctuate around a mixed stable equilibrium [Figure 1,
Movie S1].

Discussion

Producers and non-producers coexist if benefits are
sigmoid

In summary, in a public goods game with two types of cells,

producers and non-producers of a diffusible molecule, a stable

polymorphism of the two types is likely under a wide range of

parameters if the effect of the molecule is a sigmoid function of its

concentration. The shape of the diffusion gradient is largely

irrelevant and even a simple step function (that is, a model in

which the diffusible molecule is fully functional up to a certain

range and completely ineffective beyond that range) is accurate

enough. These results, therefore, are similar to results in well-

mixed populations [9], where coexistence of producers and non-

producers is commonly observed. In short, the difference between

Borenstein et al. [13] and Archetti [15] is the shape of the benefit

function, not the shape of the diffusion gradient. The conclusion of

Figure 5. Why sigmoid benefits lead to different results from
concave and convex benefits in spatially structured popula-
tions. The fraction of producers within the diffusion range (shown by
an arrow) of molecules produced by cells at the producer/non-producer
front remains approximately constant (,0.5) even as the front moves
ahead. If the benefit function is concave (h = 0.1) or convex (h = 0.9), at
this fraction of producers (,0.5) non-producers have an advantage,
whereas producers have an advantage if the benefit function is sigmoid
(h = 0.5). (n = 20, c = 0.1, s = 10).
doi:10.1371/journal.pone.0108526.g005
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Borenstein et al. [13] that coexistence is impossible depends on

their assumption that benefits are linear.

Borenstein et al. [13] conclude that their assumption of linearity

does not affect their result, and that non-linear benefits would lead

to the same result (no coexistence of the two types). Their

discussion of non-linearities, however, assumes a concave benefit

function, rather than a sigmoid function. The extinction of one of

the two types when benefits are concave is also observed in a

model without diffusion gradient [15]. Scheuring [14] observes

coexistence with concave benefits in a 1-D model. Here we have

seen that concave benefits can actually lead to coexistence of the

two types only under very restrictive conditions (the production

cost must not be too high). Coexistence of producers and non-

producers, however, is the typical result of the dynamics if benefits

are sigmoid.

Sigmoid benefits are common in biological public goods
The relevance of these results depends on how common linear,

sigmoid or concave benefits are in nature. Borenstein et al. [13]

ask ‘‘could a saturating resource uptake curve, such as the

Michaelis-Menten model facilitate coexistence?’’ (concluding that

the answer is no). The Michaelis-Menten equation discussed by

Borenstein et al. [13], however, is a concave function. Biological

input-output systems, instead, generally follow the Hill equation

[19,20], that is, biological input-output systems generally show a

slow response at low inputs levels followed by a steep increase in

response at intermediate levels and again a decreasing sensitivity as

input levels increases. In other words, the effect of a biological

molecule is often a sigmoid, not concave, function of its

concentration [20–23]. Examples of sigmoid benefits have been

reported for public goods in both microbes [24], and cancer cells

[25].

There are various proximate explanations for the occurrence of

sigmoid benefits in nature. The most basic explanation [20] is

cooperative binding: transforming a single molecule to an active

state may require simultaneous binding by multiple input signal

molecules. Other explanations [23] include titration of a repressor
(the initial reaction may inactivate the input signal molecule or

reduce sensitivity to low intensity input signals), and opposing
saturated forward and back reactions (a back reaction may return

the active form produced by the initial reaction to the inactive

state, and if the back reaction saturates at low signal input

intensity, then a logarithmic output will result at low input

intensity). More in general, the reason for the common occurrence

of ‘‘Hill kinetics’’ is that the final physiological or behavioral

response of a biological system is produced by a cascade of signal

originating from cellular receptors and sensory systems. This series

of reactions amplifies even the slightest departure from linearity of

the underlying individual chemical reactions [21].

Since biological molecules generally follow the Hill kinetics

(sigmoid benefits) rather than the Michaelis-Menten kinetics

(concave benefits), and because linear benefits are unlikely to exist

at all in nature, the coexistence of producers and non-producers is

likely to be the typical outcome of cooperation for the production

of diffusible molecules.

Further work on diffusible public goods
While, as we have seen, the exact shape of the diffusion gradient

is not essential, the diffusion range of the molecule is important in

determining the dynamics of the production of diffusible

molecules. Here we have assumed that the diffusion range is

small, thus group size (the interaction neighborhood) is always one

order of magnitude smaller than population size. If the diffusion

range is such that group size approaches population size, however,

the extinction of one of the two types becomes possible [10,17].

Measuring the diffusion range of molecules that act as public

goods is therefore important to understand their dynamics.

While Borenstein et al. [13] use a stochastic update rule, both

Scheuring [14] and Archetti [15] show that whether update is

deterministic or stochastic does not lead to substantially different

results, except for the time required to reach a polymorphism. The

details of the update rule, however, may be important. Scheuring

[14] shows that, in his 1-D model, concave benefits lead to

coexistence when using the birth-death update rule (the same rule

used by both Borenstein et al. [13], Archetti [15] and here), but

not with a death-birth rule. It is understood that very different

results can be expected in spatially structured populations based

on whether local and global selection are random or proportional

to fitness (a more appropriate classification of update rules than the

mere order of birth and death [26]).

The combined results of Borenstein et al. [13], Scheuring [14],

Archetti [15], and the ones reported here help us understand the

importance of non-linear benefits and of diffusion gradients;

Scheuring [14] goes one step further and analyses a further update

rule, although in a 1-D model and only with linear and concave

benefits; Allen et al. [16] make a thorough analysis of diffusion and

use different update rules, but their analysis is limited to linear

benefits. It would be worth extending these studies of diffusible

public goods to analyse the effect of different update rules on 2-D

games with different update rules and benefits functions.

Conclusion

As noted recently by Borenstein et al. [13], Scheuring [14],

Archetti [15] and Allen et al. [16], the dynamics of public goods

production in biological systems must be analysed by games in

which the interaction neighbourhood extends beyond the update

neighbourhood. As we have seen here, however, the precise shape

of the diffusion gradient has a relatively little impact on the results,

and therefore an accurate treatment of diffusion is not essential; a

simple diffusion range without decreasing efficacy is a good

enough approximation. The crucial assumption of the models,

instead, is the shape of the benefit function. Since the dynamics of

non-linear public goods is so radically different from the dynamics

with linear benefits, and since biological public goods are generally

non-linear, the production of diffusible molecules in biological

systems cannot be reliably approximated by models with linear

benefits, even though the analysis of non-linear games is by far

more complex and rarely amenable to analytical proofs. In a

model with non-linear benefits, and therefore in a population of

cells producing a diffusible molecule, stable polymorphism is not

only possible, but the likely outcome of the dynamics.

Supporting Information

Movie S1 Long-term coexistence of producers and non-
producers. Population structure (blue: producer cells; yellow:

non-producer cells) and fitness, from -c (grey) to 1 (pink) (as in

Figure 1) during the first 200 divisions per cell, after a cluster of

non-produce cells arises in a population of producers; sigmoid

benefit (s = 20, h = 0.5), no diffusion gradient (z = 1000, d = 3,

D = 6), c = 0.05.

(MOV)
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